Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Simplify the expression below.
[tex]\[ \left(x^{-4}\right)^{-6} \][/tex]

A. \(x^{-24}\)

B. \(x^{-10}\)

C. \(x^{10}\)

D. [tex]\(x^{24}\)[/tex]

Sagot :

To simplify the expression \(\left(x^{-4}\right)^{-6}\), we can apply the exponentiation rule:

[tex]\[ (a^b)^c = a^{b \cdot c} \][/tex]

Here, we have the expression \((x^{-4})^{-6}\).

1. Identify the base (\(x\)) and the exponents (\(-4\) and \(-6\)).
2. Apply the exponentiation rule:

[tex]\[ (x^{-4})^{-6} = x^{(-4) \cdot (-6)} \][/tex]

3. Calculate the product of the exponents:

[tex]\[ (-4) \cdot (-6) = 24 \][/tex]

So the expression simplifies to:

[tex]\[ x^{24} \][/tex]

Therefore, the correct answer is:

D. [tex]\(x^{24}\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.