Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Let's critically analyze Micah's steps and determine if his conclusion is correct and what the correct form of the solution should be.
1. The original equation to solve is:
[tex]\[ \frac{5}{6}(1 - 3x) = 4\left(-\frac{5x}{8} + 2\right) \][/tex]
2. To eliminate the fractions, we clear the denominators by multiplying every term by the least common multiple (LCM) of 6 and 8. The LCM of 6 and 8 is 24:
[tex]\[ 24 \cdot \frac{5}{6}(1 - 3x) = 24 \cdot 4\left(-\frac{5x}{8} + 2\right) \][/tex]
3. Multiply and simplify both sides:
[tex]\[ 4 \cdot 5(1 - 3x) = 96\left(-\frac{5x}{8} + 2\right) \][/tex]
[tex]\[ 20(1 - 3x) = 96\left(-\frac{5x}{8} + 2\right) \][/tex]
4. Simplify inside the parentheses:
[tex]\[ 20 - 60x = 96\left(-\frac{5x}{8}\right) + 192 \][/tex]
5. Distribute and simplify the right-hand side:
[tex]\[ 20 - 60x = -60x + 192 \][/tex]
6. Now, observe that when we simplify the equation further, we notice:
[tex]\[ (20 - 60x) + 60x = (-60x + 192) + 60x \][/tex]
[tex]\[ 20 = 192 \][/tex]
7. This simplifies to a contradiction:
[tex]\[ 20 = 192 \][/tex]
Since the simplification leads to a contradiction, it indicates there is no value of \( x \) that satisfies the given equation. Therefore, Micah's solution is incorrect.
Given this detailed analysis, the correct statement about Micah's solution is:
Micah's solution is wrong. There are no values of [tex]\( x \)[/tex] that make the statement true.
1. The original equation to solve is:
[tex]\[ \frac{5}{6}(1 - 3x) = 4\left(-\frac{5x}{8} + 2\right) \][/tex]
2. To eliminate the fractions, we clear the denominators by multiplying every term by the least common multiple (LCM) of 6 and 8. The LCM of 6 and 8 is 24:
[tex]\[ 24 \cdot \frac{5}{6}(1 - 3x) = 24 \cdot 4\left(-\frac{5x}{8} + 2\right) \][/tex]
3. Multiply and simplify both sides:
[tex]\[ 4 \cdot 5(1 - 3x) = 96\left(-\frac{5x}{8} + 2\right) \][/tex]
[tex]\[ 20(1 - 3x) = 96\left(-\frac{5x}{8} + 2\right) \][/tex]
4. Simplify inside the parentheses:
[tex]\[ 20 - 60x = 96\left(-\frac{5x}{8}\right) + 192 \][/tex]
5. Distribute and simplify the right-hand side:
[tex]\[ 20 - 60x = -60x + 192 \][/tex]
6. Now, observe that when we simplify the equation further, we notice:
[tex]\[ (20 - 60x) + 60x = (-60x + 192) + 60x \][/tex]
[tex]\[ 20 = 192 \][/tex]
7. This simplifies to a contradiction:
[tex]\[ 20 = 192 \][/tex]
Since the simplification leads to a contradiction, it indicates there is no value of \( x \) that satisfies the given equation. Therefore, Micah's solution is incorrect.
Given this detailed analysis, the correct statement about Micah's solution is:
Micah's solution is wrong. There are no values of [tex]\( x \)[/tex] that make the statement true.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.