Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To simplify the expression \(\frac{6 m^2 n^2}{3 n}\), we can follow these detailed steps:
1. Separate the Coefficients from the Variables:
- Identify the coefficients and the variables in the numerator and the denominator.
- In the numerator, we have the coefficient 6, and the variables \(m^2\) and \(n^2\).
- In the denominator, we have the coefficient 3 and the variable \(n\).
2. Simplify the Coefficients:
- Divide the coefficient in the numerator by the coefficient in the denominator: \(\frac{6}{3} = 2\).
3. Simplify the Exponents of \(m\):
- In the numerator, we have \(m^2\), and there is no \(m\) term in the denominator, so \(m^2\) remains as it is.
4. Simplify the Exponents of \(n\):
- In the numerator, we have \(n^2\).
- In the denominator, we have \(n\).
- Apply the rule of exponents where \(\frac{n^a}{n^b} = n^{a-b}\).
- Thus, \(\frac{n^2}{n} = n^{2-1} = n^1 = n\).
5. Combine the Simplified Terms:
- After simplification, the coefficient is 2.
- The \(m\) term remains as \(m^2\).
- The \(n\) term is simplified to \(n\).
Therefore, the simplified result is:
[tex]\[ \frac{6 m^2 n^2}{3 n} = 2 m^2 n \][/tex]
1. Separate the Coefficients from the Variables:
- Identify the coefficients and the variables in the numerator and the denominator.
- In the numerator, we have the coefficient 6, and the variables \(m^2\) and \(n^2\).
- In the denominator, we have the coefficient 3 and the variable \(n\).
2. Simplify the Coefficients:
- Divide the coefficient in the numerator by the coefficient in the denominator: \(\frac{6}{3} = 2\).
3. Simplify the Exponents of \(m\):
- In the numerator, we have \(m^2\), and there is no \(m\) term in the denominator, so \(m^2\) remains as it is.
4. Simplify the Exponents of \(n\):
- In the numerator, we have \(n^2\).
- In the denominator, we have \(n\).
- Apply the rule of exponents where \(\frac{n^a}{n^b} = n^{a-b}\).
- Thus, \(\frac{n^2}{n} = n^{2-1} = n^1 = n\).
5. Combine the Simplified Terms:
- After simplification, the coefficient is 2.
- The \(m\) term remains as \(m^2\).
- The \(n\) term is simplified to \(n\).
Therefore, the simplified result is:
[tex]\[ \frac{6 m^2 n^2}{3 n} = 2 m^2 n \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.