Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Is (x + 7) a factor of f(x) = x3 − 3x2 + 2x − 8? Use either the remainder theorem or the factor theorem to explain your reasoning.


Sagot :

Answer:

No

Step-by-step explanation:

We can determine whether (x + 7) is a factor of the cubic function:

[tex]f(x)=x^3-3x^2+2x-8[/tex]

using polynomial long division:

[tex]\text{ }\ \ \ \ \ \ \ \ \ x^2-10x+72\\ x+7 \ )\!\overline{\ x^3-3x^2+2x-8} \\ \text{ }\ \ \ \ \ \underline{-(x^3 + 7x^2)} \\ \text{ }\ \ \ \ \ \ \ \ \: 0-10x^2 + 2x \\ \text{ }\ \ \ \ \ \ \ \ \ \ \underline{-(10x^2 - 70x)} \\ \text{ }\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 0 + 72x - 8 \\ \text{ }\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \underline{-(72x+504)} \\ \text{ }\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ R \ \text{-}\, 512[/tex]

Since there is a remainder of -512, (x + 7) is NOT a factor of the cubic function.

Further Note

We can technically write (x + 7) as a factor of the function, but it requires (x + 7) also being in the denominator of a fraction, thus canceling itself when multiplied out:

[tex]f(x)=\left(x+7\right)\!\left(x^2-10x+72-\dfrac{512}{x+7}\right)[/tex]