At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's break this down step by step and complete the identity:
We start with the given expression:
[tex]\[ \sin^2 x + \tan^2 x + \cos^2 x \][/tex]
First, recall two fundamental trigonometric identities:
1. \(\sin^2 x + \cos^2 x = 1\)
2. \(\tan x = \frac{\sin x}{\cos x}\), so \(\tan^2 x = \left(\frac{\sin x}{\cos x}\right)^2 = \frac{\sin^2 x}{\cos^2 x}\)
Using these identities, we can rewrite the given expression:
[tex]\[ \sin^2 x + \tan^2 x + \cos^2 x = \sin^2 x + \frac{\sin^2 x}{\cos^2 x} + \cos^2 x \][/tex]
We simplify the expression by recognizing that the second term can be written using the identity of secant (\(\sec x = \frac{1}{\cos x}\)):
[tex]\[ \sin^2 x + \frac{\sin^2 x}{\cos^2 x} + \cos^2 x = \sin^2 x + \sin^2 x \cdot \sec^2 x + \cos^2 x \][/tex]
Next, substitute \(\sec^2 x\) with its identity \(\sec^2 x = 1 + \tan^2 x\):
[tex]\[ \sin^2 x + \sin^2 x (1 + \tan^2 x) + \cos^2 x \][/tex]
Now we simplify the product:
[tex]\[ \sin^2 x + \sin^2 x + \sin^2 x \tan^2 x + \cos^2 x = \sin^2 x + \sin^2 x \tan^2 x + \cos^2 x + \sin^2 x \][/tex]
Combine like terms. Notice \(\sin^2 x\) appears twice:
[tex]\[ 2 \sin^2 x + \cos^2 x + \sin^2 x \tan^2 x \][/tex]
Since \(\sin^2 x + \cos^2 x = 1\):
[tex]\[ 1 + \sin^2 x \tan^2 x \][/tex]
We now notice that \(\sec^2 x = 1 + \tan^2 x\):
So we equate:
[tex]\[ 1 + \tan^2 x \quad \text{recall earlier simplification matches} 1 + \sin^2 x \][/tex]
Thus, the correct identity is:
[tex]\[ \sin^2 x + \tan^2 x + \cos^2 x = \sec^2 x \][/tex]
The correct answer is:
B. [tex]\(\sec^2 x\)[/tex]
We start with the given expression:
[tex]\[ \sin^2 x + \tan^2 x + \cos^2 x \][/tex]
First, recall two fundamental trigonometric identities:
1. \(\sin^2 x + \cos^2 x = 1\)
2. \(\tan x = \frac{\sin x}{\cos x}\), so \(\tan^2 x = \left(\frac{\sin x}{\cos x}\right)^2 = \frac{\sin^2 x}{\cos^2 x}\)
Using these identities, we can rewrite the given expression:
[tex]\[ \sin^2 x + \tan^2 x + \cos^2 x = \sin^2 x + \frac{\sin^2 x}{\cos^2 x} + \cos^2 x \][/tex]
We simplify the expression by recognizing that the second term can be written using the identity of secant (\(\sec x = \frac{1}{\cos x}\)):
[tex]\[ \sin^2 x + \frac{\sin^2 x}{\cos^2 x} + \cos^2 x = \sin^2 x + \sin^2 x \cdot \sec^2 x + \cos^2 x \][/tex]
Next, substitute \(\sec^2 x\) with its identity \(\sec^2 x = 1 + \tan^2 x\):
[tex]\[ \sin^2 x + \sin^2 x (1 + \tan^2 x) + \cos^2 x \][/tex]
Now we simplify the product:
[tex]\[ \sin^2 x + \sin^2 x + \sin^2 x \tan^2 x + \cos^2 x = \sin^2 x + \sin^2 x \tan^2 x + \cos^2 x + \sin^2 x \][/tex]
Combine like terms. Notice \(\sin^2 x\) appears twice:
[tex]\[ 2 \sin^2 x + \cos^2 x + \sin^2 x \tan^2 x \][/tex]
Since \(\sin^2 x + \cos^2 x = 1\):
[tex]\[ 1 + \sin^2 x \tan^2 x \][/tex]
We now notice that \(\sec^2 x = 1 + \tan^2 x\):
So we equate:
[tex]\[ 1 + \tan^2 x \quad \text{recall earlier simplification matches} 1 + \sin^2 x \][/tex]
Thus, the correct identity is:
[tex]\[ \sin^2 x + \tan^2 x + \cos^2 x = \sec^2 x \][/tex]
The correct answer is:
B. [tex]\(\sec^2 x\)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.