Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which set of ordered pairs could be generated by an exponential function, let's check each set of points. An exponential function has the form \(y = a \cdot b^x\) for constants \(a\) and \(b\). Below each set will be analyzed to see if it follows this form.
### Set 1:
[tex]\[ (1, 1), \left(2, \frac{1}{2}\right), \left(3, \frac{1}{3}\right), \left(4, \frac{1}{4}\right) \][/tex]
For this set to follow the form \(y = a \cdot b^x\), the ratio \(\frac{y_{i+1}}{y_i}\) must be constant.
- \(\frac{\frac{1}{2}}{1} = \frac{1}{2}\)
- \(\frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}\)
- \(\frac{\frac{1}{4}}{\frac{1}{3}} = \frac{3}{4}\)
These ratios are not constant, so this set does not represent an exponential function.
### Set 2:
[tex]\[ (1, 1), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{9}\right), \left(4, \frac{1}{16}\right) \][/tex]
Again, we check the ratios:
- \(\frac{\frac{1}{4}}{1} = \frac{1}{4}\)
- \(\frac{\frac{1}{9}}{\frac{1}{4}} = \frac{4}{9}\)
- \(\frac{\frac{1}{16}}{\frac{1}{9}} = \frac{9}{16}\)
These ratios are not constant either, so this set does not represent an exponential function.
### Set 3:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right) \][/tex]
Let's check the ratios for this set:
- \(\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}\)
- \(\frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2}\)
- \(\frac{\frac{1}{16}}{\frac{1}{8}} = \frac{1}{2}\)
The ratio is constant (\(\frac{1}{2}\)), indicating that each successive term is obtained by multiplying the previous term by \(\frac{1}{2}\). Therefore, this set follows the form \(y = a \cdot b^x\) with \(a = \frac{1}{2}\) and \(b = \frac{1}{2}\), indicating it is exponential.
### Set 4:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{6}\right), \left(4, \frac{1}{8}\right) \][/tex]
Let's check the ratios:
- \(\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}\)
- \(\frac{\frac{1}{6}}{\frac{1}{4}} = \frac{2}{3}\)
- \(\frac{\frac{1}{8}}{\frac{1}{6}} = \frac{3}{4}\)
These ratios are not constant, indicating this set does not represent an exponential function.
### Conclusion:
The set of ordered pairs that could be generated by an exponential function is:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right) \][/tex]
Thus, the correct answer is:
[tex]\[ \left( 3 \right) \][/tex]
### Set 1:
[tex]\[ (1, 1), \left(2, \frac{1}{2}\right), \left(3, \frac{1}{3}\right), \left(4, \frac{1}{4}\right) \][/tex]
For this set to follow the form \(y = a \cdot b^x\), the ratio \(\frac{y_{i+1}}{y_i}\) must be constant.
- \(\frac{\frac{1}{2}}{1} = \frac{1}{2}\)
- \(\frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}\)
- \(\frac{\frac{1}{4}}{\frac{1}{3}} = \frac{3}{4}\)
These ratios are not constant, so this set does not represent an exponential function.
### Set 2:
[tex]\[ (1, 1), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{9}\right), \left(4, \frac{1}{16}\right) \][/tex]
Again, we check the ratios:
- \(\frac{\frac{1}{4}}{1} = \frac{1}{4}\)
- \(\frac{\frac{1}{9}}{\frac{1}{4}} = \frac{4}{9}\)
- \(\frac{\frac{1}{16}}{\frac{1}{9}} = \frac{9}{16}\)
These ratios are not constant either, so this set does not represent an exponential function.
### Set 3:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right) \][/tex]
Let's check the ratios for this set:
- \(\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}\)
- \(\frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2}\)
- \(\frac{\frac{1}{16}}{\frac{1}{8}} = \frac{1}{2}\)
The ratio is constant (\(\frac{1}{2}\)), indicating that each successive term is obtained by multiplying the previous term by \(\frac{1}{2}\). Therefore, this set follows the form \(y = a \cdot b^x\) with \(a = \frac{1}{2}\) and \(b = \frac{1}{2}\), indicating it is exponential.
### Set 4:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{6}\right), \left(4, \frac{1}{8}\right) \][/tex]
Let's check the ratios:
- \(\frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}\)
- \(\frac{\frac{1}{6}}{\frac{1}{4}} = \frac{2}{3}\)
- \(\frac{\frac{1}{8}}{\frac{1}{6}} = \frac{3}{4}\)
These ratios are not constant, indicating this set does not represent an exponential function.
### Conclusion:
The set of ordered pairs that could be generated by an exponential function is:
[tex]\[ \left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right) \][/tex]
Thus, the correct answer is:
[tex]\[ \left( 3 \right) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.