Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the domain and range of the function \( f(x) = \left( \frac{1}{5} \right)^x \), let's analyze the function step-by-step.
### Step 1: Determine the Domain
The domain of a function represents all the possible input values (\( x \)) for which the function is defined. For the exponential function \( f(x) = a^x \), where \( a > 0 \) and \( a \neq 1 \), the base \( a \) is a positive real number. This means that you can substitute any real number for \( x \), and the function will produce a valid output.
Since \( \left( \frac{1}{5} \right) \) is a positive number and any real number can be an exponent, the domain of \( f(x) = \left( \frac{1}{5} \right)^x \) is:
[tex]\[ \text{Domain: All real numbers} \][/tex]
### Step 2: Determine the Range
The range of a function represents all the possible output values (\( f(x) \)) that the function can produce. For the function \( f(x) = \left( \frac{1}{5} \right)^x \):
- When \( x = 0 \), \( f(x) = \left( \frac{1}{5} \right)^0 = 1 \).
- As \( x \) becomes larger and larger (going towards \( +\infty \)), \( f(x) \) approaches 0 but is never actually 0. It asymptotically approaches 0 from the positive side.
- As \( x \) becomes more and more negative (going towards \( -\infty \)), \( f(x) = \left( \frac{1}{5} \right)^x = 5^{-x} \) becomes very large.
Since \( \left( \frac{1}{5} \right)^x \) is always positive for any real number \( x \), the range of the function is:
[tex]\[ \text{Range: All real numbers greater than zero} \][/tex]
### Conclusion
Combining the domain and range, we have:
- Domain: All real numbers
- Range: All real numbers greater than zero
Therefore, the correct answer is:
[tex]\[ \text{The domain is all real numbers. The range is all real numbers greater than zero.} \][/tex]
### Step 1: Determine the Domain
The domain of a function represents all the possible input values (\( x \)) for which the function is defined. For the exponential function \( f(x) = a^x \), where \( a > 0 \) and \( a \neq 1 \), the base \( a \) is a positive real number. This means that you can substitute any real number for \( x \), and the function will produce a valid output.
Since \( \left( \frac{1}{5} \right) \) is a positive number and any real number can be an exponent, the domain of \( f(x) = \left( \frac{1}{5} \right)^x \) is:
[tex]\[ \text{Domain: All real numbers} \][/tex]
### Step 2: Determine the Range
The range of a function represents all the possible output values (\( f(x) \)) that the function can produce. For the function \( f(x) = \left( \frac{1}{5} \right)^x \):
- When \( x = 0 \), \( f(x) = \left( \frac{1}{5} \right)^0 = 1 \).
- As \( x \) becomes larger and larger (going towards \( +\infty \)), \( f(x) \) approaches 0 but is never actually 0. It asymptotically approaches 0 from the positive side.
- As \( x \) becomes more and more negative (going towards \( -\infty \)), \( f(x) = \left( \frac{1}{5} \right)^x = 5^{-x} \) becomes very large.
Since \( \left( \frac{1}{5} \right)^x \) is always positive for any real number \( x \), the range of the function is:
[tex]\[ \text{Range: All real numbers greater than zero} \][/tex]
### Conclusion
Combining the domain and range, we have:
- Domain: All real numbers
- Range: All real numbers greater than zero
Therefore, the correct answer is:
[tex]\[ \text{The domain is all real numbers. The range is all real numbers greater than zero.} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.