Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Let's solve this step by step according to the given conditions. We have:
[tex]\[ \tan \alpha = -\frac{7}{24}, \quad \alpha \text{ lies in quadrant II} \][/tex]
[tex]\[ \cos \beta = \frac{3}{4}, \quad \beta \text{ lies in quadrant I} \][/tex]
### Step 1: Find \(\sin \alpha\) and \(\cos \alpha\)
Since \(\alpha\) lies in quadrant II, \(\cos \alpha\) will be negative and \(\sin \alpha\) will be positive.
To find \(\cos \alpha\), we use the identity:
[tex]\[ \tan^2 \alpha + 1 = \sec^2 \alpha \][/tex]
Given \(\tan \alpha = -\frac{7}{24}\):
[tex]\[ \left(-\frac{7}{24}\right)^2 + 1 = \sec^2 \alpha \Rightarrow \frac{49}{576} + 1 = \sec^2 \alpha \Rightarrow \frac{49}{576} + \frac{576}{576} = \sec^2 \alpha \Rightarrow \sec^2 \alpha = \frac{625}{576} \][/tex]
Since \(\sec \alpha = \frac{1}{\cos \alpha}\), we have:
[tex]\[ \sec \alpha = \frac{25}{24} \Rightarrow \cos \alpha = \frac{24}{25} \][/tex]
As \(\alpha\) is in quadrant II, \(\cos \alpha\) is negative:
[tex]\[ \cos \alpha = -\frac{24}{25} \][/tex]
Now, using \(\tan \alpha = \frac{\sin \alpha}{\cos \alpha}\):
[tex]\[ \tan \alpha = -\frac{7}{24} = \frac{\sin \alpha}{-\frac{24}{25}} \Rightarrow \sin \alpha = \frac{7}{25} \][/tex]
So, we have:
[tex]\[ \sin \alpha = \frac{7}{25} \][/tex]
### Step 2: Find \(\sin \beta\)
Given \(\cos \beta = \frac{3}{4}\) and \(\beta \text{ lies in quadrant I}\), where both \(\sin \beta\) and \(\cos \beta\) are positive, we use:
[tex]\[ \sin^2 \beta + \cos^2 \beta = 1 \][/tex]
[tex]\[ \sin^2 \beta + \left(\frac{3}{4}\right)^2 = 1 \Rightarrow \sin^2 \beta + \frac{9}{16} = 1 \Rightarrow \sin^2 \beta = \frac{7}{16} \][/tex]
Taking the positive root:
[tex]\[ \sin \beta = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4} \][/tex]
### Step 3: Calculate \(\sin (\alpha + \beta)\), \(\cos (\alpha + \beta)\), and \(\tan (\alpha + \beta)\)
#### a. \(\sin (\alpha + \beta)\)
[tex]\[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \][/tex]
Substitute the values:
[tex]\[ \sin (\alpha + \beta) = \left(\frac{7}{25}\right) \left(\frac{3}{4}\right) + \left(-\frac{24}{25}\right) \left(\frac{\sqrt{7}}{4}\right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{21}{100} - \frac{24\sqrt{7}}{100} = \frac{21 - 24\sqrt{7}}{100} \][/tex]
#### b. \(\cos (\alpha + \beta)\)
[tex]\[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \][/tex]
Substitute the values:
[tex]\[ \cos (\alpha + \beta) = \left(-\frac{24}{25}\right) \left(\frac{3}{4}\right) - \left(\frac{7}{25}\right) \left(\frac{\sqrt{7}}{4}\right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = -\frac{72}{100} - \frac{7\sqrt{7}}{100} = \frac{-72 - 7\sqrt{7}}{100} \][/tex]
#### c. \(\tan (\alpha + \beta)\)
[tex]\[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}} = \frac{\sqrt{7}}{3} \][/tex]
Use the identity:
[tex]\[ \tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \][/tex]
Substitute the values:
[tex]\[ \tan (\alpha + \beta) = \frac{-\frac{7}{24} + \frac{\sqrt{7}}{3}}{1 - \left(-\frac{7}{24}\right) \left(\frac{\sqrt{7}}{3}\right)} \][/tex]
[tex]\[ \tan (\alpha + \beta) = \frac{-\frac{7}{24} + \frac{8\sqrt{7}}{24}}{1 + \frac{7\sqrt{7}}{72}} = \frac{\frac{-7 + 8\sqrt{7}}{24}}{\frac{72 + 7\sqrt{7}}{72}} = \frac{-7 + 8\sqrt{7}}{24 + \frac{72}{72}7\sqrt{7}} = \frac{-7 + 8\sqrt{7}}{31\sqrt{33}} } \][/tex]
So the exact values are:
[tex]\[ \sin (\alpha + \beta) = \boxed{\frac{21 - 24\sqrt{7}}{100}}, \quad \cos (\alpha + \beta) = \boxed{\frac{-72 - 7\sqrt{7}}{100}}, \quad \tan (\alpha + \beta) = \boxed{0.469} \][/tex]
[tex]\[ \tan \alpha = -\frac{7}{24}, \quad \alpha \text{ lies in quadrant II} \][/tex]
[tex]\[ \cos \beta = \frac{3}{4}, \quad \beta \text{ lies in quadrant I} \][/tex]
### Step 1: Find \(\sin \alpha\) and \(\cos \alpha\)
Since \(\alpha\) lies in quadrant II, \(\cos \alpha\) will be negative and \(\sin \alpha\) will be positive.
To find \(\cos \alpha\), we use the identity:
[tex]\[ \tan^2 \alpha + 1 = \sec^2 \alpha \][/tex]
Given \(\tan \alpha = -\frac{7}{24}\):
[tex]\[ \left(-\frac{7}{24}\right)^2 + 1 = \sec^2 \alpha \Rightarrow \frac{49}{576} + 1 = \sec^2 \alpha \Rightarrow \frac{49}{576} + \frac{576}{576} = \sec^2 \alpha \Rightarrow \sec^2 \alpha = \frac{625}{576} \][/tex]
Since \(\sec \alpha = \frac{1}{\cos \alpha}\), we have:
[tex]\[ \sec \alpha = \frac{25}{24} \Rightarrow \cos \alpha = \frac{24}{25} \][/tex]
As \(\alpha\) is in quadrant II, \(\cos \alpha\) is negative:
[tex]\[ \cos \alpha = -\frac{24}{25} \][/tex]
Now, using \(\tan \alpha = \frac{\sin \alpha}{\cos \alpha}\):
[tex]\[ \tan \alpha = -\frac{7}{24} = \frac{\sin \alpha}{-\frac{24}{25}} \Rightarrow \sin \alpha = \frac{7}{25} \][/tex]
So, we have:
[tex]\[ \sin \alpha = \frac{7}{25} \][/tex]
### Step 2: Find \(\sin \beta\)
Given \(\cos \beta = \frac{3}{4}\) and \(\beta \text{ lies in quadrant I}\), where both \(\sin \beta\) and \(\cos \beta\) are positive, we use:
[tex]\[ \sin^2 \beta + \cos^2 \beta = 1 \][/tex]
[tex]\[ \sin^2 \beta + \left(\frac{3}{4}\right)^2 = 1 \Rightarrow \sin^2 \beta + \frac{9}{16} = 1 \Rightarrow \sin^2 \beta = \frac{7}{16} \][/tex]
Taking the positive root:
[tex]\[ \sin \beta = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4} \][/tex]
### Step 3: Calculate \(\sin (\alpha + \beta)\), \(\cos (\alpha + \beta)\), and \(\tan (\alpha + \beta)\)
#### a. \(\sin (\alpha + \beta)\)
[tex]\[ \sin (\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta \][/tex]
Substitute the values:
[tex]\[ \sin (\alpha + \beta) = \left(\frac{7}{25}\right) \left(\frac{3}{4}\right) + \left(-\frac{24}{25}\right) \left(\frac{\sqrt{7}}{4}\right) \][/tex]
[tex]\[ \sin (\alpha + \beta) = \frac{21}{100} - \frac{24\sqrt{7}}{100} = \frac{21 - 24\sqrt{7}}{100} \][/tex]
#### b. \(\cos (\alpha + \beta)\)
[tex]\[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \][/tex]
Substitute the values:
[tex]\[ \cos (\alpha + \beta) = \left(-\frac{24}{25}\right) \left(\frac{3}{4}\right) - \left(\frac{7}{25}\right) \left(\frac{\sqrt{7}}{4}\right) \][/tex]
[tex]\[ \cos (\alpha + \beta) = -\frac{72}{100} - \frac{7\sqrt{7}}{100} = \frac{-72 - 7\sqrt{7}}{100} \][/tex]
#### c. \(\tan (\alpha + \beta)\)
[tex]\[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{\frac{\sqrt{7}}{4}}{\frac{3}{4}} = \frac{\sqrt{7}}{3} \][/tex]
Use the identity:
[tex]\[ \tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \][/tex]
Substitute the values:
[tex]\[ \tan (\alpha + \beta) = \frac{-\frac{7}{24} + \frac{\sqrt{7}}{3}}{1 - \left(-\frac{7}{24}\right) \left(\frac{\sqrt{7}}{3}\right)} \][/tex]
[tex]\[ \tan (\alpha + \beta) = \frac{-\frac{7}{24} + \frac{8\sqrt{7}}{24}}{1 + \frac{7\sqrt{7}}{72}} = \frac{\frac{-7 + 8\sqrt{7}}{24}}{\frac{72 + 7\sqrt{7}}{72}} = \frac{-7 + 8\sqrt{7}}{24 + \frac{72}{72}7\sqrt{7}} = \frac{-7 + 8\sqrt{7}}{31\sqrt{33}} } \][/tex]
So the exact values are:
[tex]\[ \sin (\alpha + \beta) = \boxed{\frac{21 - 24\sqrt{7}}{100}}, \quad \cos (\alpha + \beta) = \boxed{\frac{-72 - 7\sqrt{7}}{100}}, \quad \tan (\alpha + \beta) = \boxed{0.469} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.