At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To verify the identity \(\frac{\cot ^2 t}{\csc t}=\cot t \cos t\), let's break down the steps clearly and determine which statement correctly establishes the identity.
1. Express cotangent and cosecant in terms of sine and cosine:
[tex]\[ \cot t = \frac{\cos t}{\sin t} \][/tex]
[tex]\[ \csc t = \frac{1}{\sin t} \][/tex]
2. Square the cotangent function:
[tex]\[ \cot^2 t = \left(\frac{\cos t}{\sin t}\right)^2 = \frac{\cos^2 t}{\sin^2 t} \][/tex]
3. Substitute thus-derived expressions into the original identity:
[tex]\[ \frac{\cot^2 t}{\csc t} = \frac{\frac{\cos^2 t}{\sin^2 t}}{\frac{1}{\sin t}} \][/tex]
4. Simplify the fraction:
[tex]\[ \frac{\frac{\cos^2 t}{\sin^2 t}}{\frac{1}{\sin t}} = \frac{\cos^2 t}{\sin^2 t} \times \sin t = \frac{\cos^2 t}{\sin t} \][/tex]
5. Combine the expressions:
[tex]\[ \frac{\cos^2 t}{\sin t} = \left(\frac{\cos t}{\sin t}\right) \cos t = \cot t \cos t \][/tex]
Therefore, [tex]\[ \frac{\cot ^2 t}{\csc t} = \cot t \cos t \][/tex]
Among the given options, the one that correctly establishes this identity is:
A. \(\frac{\cot ^2 t}{\csc t}=\cot t\left(\frac{\cos t}{\sin t}\right)(\sin t)=\cot t \cos t\)
This statement methodically breaks down the required steps, showing that dividing [tex]\(\cot^2 t\)[/tex] by [tex]\(\csc t\)[/tex] and then simplifying gives [tex]\(\cot t \cos t\)[/tex], thus establishing the identity.
1. Express cotangent and cosecant in terms of sine and cosine:
[tex]\[ \cot t = \frac{\cos t}{\sin t} \][/tex]
[tex]\[ \csc t = \frac{1}{\sin t} \][/tex]
2. Square the cotangent function:
[tex]\[ \cot^2 t = \left(\frac{\cos t}{\sin t}\right)^2 = \frac{\cos^2 t}{\sin^2 t} \][/tex]
3. Substitute thus-derived expressions into the original identity:
[tex]\[ \frac{\cot^2 t}{\csc t} = \frac{\frac{\cos^2 t}{\sin^2 t}}{\frac{1}{\sin t}} \][/tex]
4. Simplify the fraction:
[tex]\[ \frac{\frac{\cos^2 t}{\sin^2 t}}{\frac{1}{\sin t}} = \frac{\cos^2 t}{\sin^2 t} \times \sin t = \frac{\cos^2 t}{\sin t} \][/tex]
5. Combine the expressions:
[tex]\[ \frac{\cos^2 t}{\sin t} = \left(\frac{\cos t}{\sin t}\right) \cos t = \cot t \cos t \][/tex]
Therefore, [tex]\[ \frac{\cot ^2 t}{\csc t} = \cot t \cos t \][/tex]
Among the given options, the one that correctly establishes this identity is:
A. \(\frac{\cot ^2 t}{\csc t}=\cot t\left(\frac{\cos t}{\sin t}\right)(\sin t)=\cot t \cos t\)
This statement methodically breaks down the required steps, showing that dividing [tex]\(\cot^2 t\)[/tex] by [tex]\(\csc t\)[/tex] and then simplifying gives [tex]\(\cot t \cos t\)[/tex], thus establishing the identity.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.