Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's verify the trigonometric identity:
[tex]$ \frac{1-\cos \theta}{\sin \theta} + \frac{\sin \theta}{1-\cos \theta} = 2 \csc \theta $[/tex]
We'll start by simplifying the left-hand side of the equation.
### Step 1: Simplify the First Term
Consider the first term:
[tex]$ \frac{1-\cos \theta}{\sin \theta} $[/tex]
This term can be left as it is for now.
### Step 2: Simplify the Second Term
Consider the second term:
[tex]$ \frac{\sin \theta}{1-\cos \theta} $[/tex]
We observe that the denominator \(1 - \cos \theta\) in this term is the same as the numerator in the previous term.
Since multiplication of reciprocal functions simplifies:
[tex]$ \frac{a}{b} \cdot \frac{b}{a} = 1, $[/tex]
Thus, multiplying will invert the phrase.
### Step 3: Combine the Two Terms
Add the two terms together:
[tex]$ \frac{1-\cos \theta}{\sin \theta} + \frac{\sin \theta}{1-\cos \theta} $[/tex]
To combine these fractions, we need a common denominator of \( \sin \theta (1 - \cos \theta)\):
[tex]$ \frac{(1-\cos \theta)^2 + \sin^2 \theta}{\sin \theta (1-\cos \theta)} $[/tex]
### Step 4: Simplify the Numerator
Expand and simplify the numerator:
[tex]$ (1-\cos \theta)^2 + \sin^2 \theta = 1 - 2\cos \theta + \cos^2 \theta + \sin^2 \theta $[/tex]
Recall the Pythagorean identity:
[tex]$ \sin^2 \theta + \cos^2 \theta = 1 $[/tex]
Thus,
[tex]$ 1 - 2\cos \theta + \cos^2 \theta + \sin^2 \theta = 1 - 2\cos \theta + 1 = 2 - 2\cos \theta $[/tex]
Factor out the 2:
[tex]$ 2(1 - \cos \theta) $[/tex]
### Step 5: Combining the Results
Place the simplified numerator back into the fraction:
[tex]$ \frac{2(1-\cos \theta)}{\sin \theta (1-\cos \theta)} $[/tex]
The terms \(1 - \cos \theta\) cancel out in the numerator and the denominator:
[tex]$ \frac{2}{\sin \theta} $[/tex]
### Step 6: Realize that \(\csc \theta = \frac{1}{\sin \theta}\)
Thus:
[tex]$ \frac{2}{\sin \theta} = 2 \csc \theta $[/tex]
### Conclusion
The left-hand side simplifies exactly to the right-hand side:
[tex]$ \frac{1-\cos \theta}{\sin \theta} + \frac{\sin \theta}{1-\cos \theta} = 2 \csc \theta $[/tex]
Therefore, the identity is verified to be true.
[tex]$ \frac{1-\cos \theta}{\sin \theta} + \frac{\sin \theta}{1-\cos \theta} = 2 \csc \theta $[/tex]
We'll start by simplifying the left-hand side of the equation.
### Step 1: Simplify the First Term
Consider the first term:
[tex]$ \frac{1-\cos \theta}{\sin \theta} $[/tex]
This term can be left as it is for now.
### Step 2: Simplify the Second Term
Consider the second term:
[tex]$ \frac{\sin \theta}{1-\cos \theta} $[/tex]
We observe that the denominator \(1 - \cos \theta\) in this term is the same as the numerator in the previous term.
Since multiplication of reciprocal functions simplifies:
[tex]$ \frac{a}{b} \cdot \frac{b}{a} = 1, $[/tex]
Thus, multiplying will invert the phrase.
### Step 3: Combine the Two Terms
Add the two terms together:
[tex]$ \frac{1-\cos \theta}{\sin \theta} + \frac{\sin \theta}{1-\cos \theta} $[/tex]
To combine these fractions, we need a common denominator of \( \sin \theta (1 - \cos \theta)\):
[tex]$ \frac{(1-\cos \theta)^2 + \sin^2 \theta}{\sin \theta (1-\cos \theta)} $[/tex]
### Step 4: Simplify the Numerator
Expand and simplify the numerator:
[tex]$ (1-\cos \theta)^2 + \sin^2 \theta = 1 - 2\cos \theta + \cos^2 \theta + \sin^2 \theta $[/tex]
Recall the Pythagorean identity:
[tex]$ \sin^2 \theta + \cos^2 \theta = 1 $[/tex]
Thus,
[tex]$ 1 - 2\cos \theta + \cos^2 \theta + \sin^2 \theta = 1 - 2\cos \theta + 1 = 2 - 2\cos \theta $[/tex]
Factor out the 2:
[tex]$ 2(1 - \cos \theta) $[/tex]
### Step 5: Combining the Results
Place the simplified numerator back into the fraction:
[tex]$ \frac{2(1-\cos \theta)}{\sin \theta (1-\cos \theta)} $[/tex]
The terms \(1 - \cos \theta\) cancel out in the numerator and the denominator:
[tex]$ \frac{2}{\sin \theta} $[/tex]
### Step 6: Realize that \(\csc \theta = \frac{1}{\sin \theta}\)
Thus:
[tex]$ \frac{2}{\sin \theta} = 2 \csc \theta $[/tex]
### Conclusion
The left-hand side simplifies exactly to the right-hand side:
[tex]$ \frac{1-\cos \theta}{\sin \theta} + \frac{\sin \theta}{1-\cos \theta} = 2 \csc \theta $[/tex]
Therefore, the identity is verified to be true.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.