Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the solutions to the quadratic equation \(10x^2 - 17x + 3 = 0\), we can use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where \(a\), \(b\), and \(c\) are the coefficients of the equation \(ax^2 + bx + c = 0\). In this case, the coefficients are:
[tex]\[ a = 10, \quad b = -17, \quad c = 3 \][/tex]
First, we need to calculate the discriminant (\(\Delta\)):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of \(a\), \(b\), and \(c\):
[tex]\[ \Delta = (-17)^2 - 4(10)(3) \][/tex]
[tex]\[ \Delta = 289 - 120 \][/tex]
[tex]\[ \Delta = 169 \][/tex]
Now that we have the discriminant, we can find the two solutions using the quadratic formula:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substitute \(b = -17\), \(\Delta = 169\), and \(a = 10\):
For \(x_1\):
[tex]\[ x_1 = \frac{17 + \sqrt{169}}{20} \][/tex]
[tex]\[ x_1 = \frac{17 + 13}{20} \][/tex]
[tex]\[ x_1 = \frac{30}{20} \][/tex]
[tex]\[ x_1 = \frac{3}{2} = 1.5 \][/tex]
For \(x_2\):
[tex]\[ x_2 = \frac{17 - \sqrt{169}}{20} \][/tex]
[tex]\[ x_2 = \frac{17 - 13}{20} \][/tex]
[tex]\[ x_2 = \frac{4}{20} \][/tex]
[tex]\[ x_2 = \frac{1}{5} = 0.2 \][/tex]
Thus, the solutions to the quadratic equation \(10x^2 - 17x + 3 = 0\) are \(x = 1.5\) and \(x = 0.2\).
Comparing these results with the provided options, we see:
A. \(x = \frac{3}{2}\) and \(x = \frac{1}{5}\)
Hence, the correct answer is:
[tex]\[ \boxed{\text{A}} \][/tex]
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where \(a\), \(b\), and \(c\) are the coefficients of the equation \(ax^2 + bx + c = 0\). In this case, the coefficients are:
[tex]\[ a = 10, \quad b = -17, \quad c = 3 \][/tex]
First, we need to calculate the discriminant (\(\Delta\)):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of \(a\), \(b\), and \(c\):
[tex]\[ \Delta = (-17)^2 - 4(10)(3) \][/tex]
[tex]\[ \Delta = 289 - 120 \][/tex]
[tex]\[ \Delta = 169 \][/tex]
Now that we have the discriminant, we can find the two solutions using the quadratic formula:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substitute \(b = -17\), \(\Delta = 169\), and \(a = 10\):
For \(x_1\):
[tex]\[ x_1 = \frac{17 + \sqrt{169}}{20} \][/tex]
[tex]\[ x_1 = \frac{17 + 13}{20} \][/tex]
[tex]\[ x_1 = \frac{30}{20} \][/tex]
[tex]\[ x_1 = \frac{3}{2} = 1.5 \][/tex]
For \(x_2\):
[tex]\[ x_2 = \frac{17 - \sqrt{169}}{20} \][/tex]
[tex]\[ x_2 = \frac{17 - 13}{20} \][/tex]
[tex]\[ x_2 = \frac{4}{20} \][/tex]
[tex]\[ x_2 = \frac{1}{5} = 0.2 \][/tex]
Thus, the solutions to the quadratic equation \(10x^2 - 17x + 3 = 0\) are \(x = 1.5\) and \(x = 0.2\).
Comparing these results with the provided options, we see:
A. \(x = \frac{3}{2}\) and \(x = \frac{1}{5}\)
Hence, the correct answer is:
[tex]\[ \boxed{\text{A}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.