Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To find the solutions to the quadratic equation \(10x^2 - 17x + 3 = 0\), we can use the quadratic formula, which is given by:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where \(a\), \(b\), and \(c\) are the coefficients of the equation \(ax^2 + bx + c = 0\). In this case, the coefficients are:
[tex]\[ a = 10, \quad b = -17, \quad c = 3 \][/tex]
First, we need to calculate the discriminant (\(\Delta\)):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of \(a\), \(b\), and \(c\):
[tex]\[ \Delta = (-17)^2 - 4(10)(3) \][/tex]
[tex]\[ \Delta = 289 - 120 \][/tex]
[tex]\[ \Delta = 169 \][/tex]
Now that we have the discriminant, we can find the two solutions using the quadratic formula:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substitute \(b = -17\), \(\Delta = 169\), and \(a = 10\):
For \(x_1\):
[tex]\[ x_1 = \frac{17 + \sqrt{169}}{20} \][/tex]
[tex]\[ x_1 = \frac{17 + 13}{20} \][/tex]
[tex]\[ x_1 = \frac{30}{20} \][/tex]
[tex]\[ x_1 = \frac{3}{2} = 1.5 \][/tex]
For \(x_2\):
[tex]\[ x_2 = \frac{17 - \sqrt{169}}{20} \][/tex]
[tex]\[ x_2 = \frac{17 - 13}{20} \][/tex]
[tex]\[ x_2 = \frac{4}{20} \][/tex]
[tex]\[ x_2 = \frac{1}{5} = 0.2 \][/tex]
Thus, the solutions to the quadratic equation \(10x^2 - 17x + 3 = 0\) are \(x = 1.5\) and \(x = 0.2\).
Comparing these results with the provided options, we see:
A. \(x = \frac{3}{2}\) and \(x = \frac{1}{5}\)
Hence, the correct answer is:
[tex]\[ \boxed{\text{A}} \][/tex]
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]
where \(a\), \(b\), and \(c\) are the coefficients of the equation \(ax^2 + bx + c = 0\). In this case, the coefficients are:
[tex]\[ a = 10, \quad b = -17, \quad c = 3 \][/tex]
First, we need to calculate the discriminant (\(\Delta\)):
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substitute the values of \(a\), \(b\), and \(c\):
[tex]\[ \Delta = (-17)^2 - 4(10)(3) \][/tex]
[tex]\[ \Delta = 289 - 120 \][/tex]
[tex]\[ \Delta = 169 \][/tex]
Now that we have the discriminant, we can find the two solutions using the quadratic formula:
[tex]\[ x_1 = \frac{-b + \sqrt{\Delta}}{2a} \][/tex]
[tex]\[ x_2 = \frac{-b - \sqrt{\Delta}}{2a} \][/tex]
Substitute \(b = -17\), \(\Delta = 169\), and \(a = 10\):
For \(x_1\):
[tex]\[ x_1 = \frac{17 + \sqrt{169}}{20} \][/tex]
[tex]\[ x_1 = \frac{17 + 13}{20} \][/tex]
[tex]\[ x_1 = \frac{30}{20} \][/tex]
[tex]\[ x_1 = \frac{3}{2} = 1.5 \][/tex]
For \(x_2\):
[tex]\[ x_2 = \frac{17 - \sqrt{169}}{20} \][/tex]
[tex]\[ x_2 = \frac{17 - 13}{20} \][/tex]
[tex]\[ x_2 = \frac{4}{20} \][/tex]
[tex]\[ x_2 = \frac{1}{5} = 0.2 \][/tex]
Thus, the solutions to the quadratic equation \(10x^2 - 17x + 3 = 0\) are \(x = 1.5\) and \(x = 0.2\).
Comparing these results with the provided options, we see:
A. \(x = \frac{3}{2}\) and \(x = \frac{1}{5}\)
Hence, the correct answer is:
[tex]\[ \boxed{\text{A}} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.