Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve the equation \(4 \cos^2 x - 3 = 0\) within the interval \([0, 2\pi)\).
1. Isolate \(\cos^2 x\):
[tex]\[ 4 \cos^2 x - 3 = 0 \][/tex]
Add \(3\) to both sides:
[tex]\[ 4 \cos^2 x = 3 \][/tex]
Divide both sides by \(4\):
[tex]\[ \cos^2 x = \frac{3}{4} \][/tex]
2. Take the square root of both sides:
[tex]\[ \cos x = \pm \sqrt{\frac{3}{4}} \][/tex]
Since \(\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}\), we have:
[tex]\[ \cos x = \pm \frac{\sqrt{3}}{2} \][/tex]
3. Determine the values of \(x\) within \([0, 2\pi)\):
- For \(\cos x = \frac{\sqrt{3}}{2}\):
- \(x = \frac{\pi}{6}\)
- This cosine value appears again in the fourth quadrant at \(x = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}\)
- For \(\cos x = -\frac{\sqrt{3}}{2}\):
- This cosine value appears in the second quadrant at \(x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}\)
- It also appears in the third quadrant at \(x = \pi + \frac{\pi}{6} = \frac{7\pi}{6}\)
Therefore, the solutions to the equation \(4 \cos^2 x - 3 = 0\) in the interval \([0, 2\pi)\) are:
[tex]\[ x = \left\{\frac{\pi}{6}, \frac{11\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}\right\} \][/tex]
So the correct choice is:
A. [tex]\( x = \frac{\pi}{6}, \frac{11\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6} \)[/tex]
1. Isolate \(\cos^2 x\):
[tex]\[ 4 \cos^2 x - 3 = 0 \][/tex]
Add \(3\) to both sides:
[tex]\[ 4 \cos^2 x = 3 \][/tex]
Divide both sides by \(4\):
[tex]\[ \cos^2 x = \frac{3}{4} \][/tex]
2. Take the square root of both sides:
[tex]\[ \cos x = \pm \sqrt{\frac{3}{4}} \][/tex]
Since \(\sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}\), we have:
[tex]\[ \cos x = \pm \frac{\sqrt{3}}{2} \][/tex]
3. Determine the values of \(x\) within \([0, 2\pi)\):
- For \(\cos x = \frac{\sqrt{3}}{2}\):
- \(x = \frac{\pi}{6}\)
- This cosine value appears again in the fourth quadrant at \(x = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6}\)
- For \(\cos x = -\frac{\sqrt{3}}{2}\):
- This cosine value appears in the second quadrant at \(x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}\)
- It also appears in the third quadrant at \(x = \pi + \frac{\pi}{6} = \frac{7\pi}{6}\)
Therefore, the solutions to the equation \(4 \cos^2 x - 3 = 0\) in the interval \([0, 2\pi)\) are:
[tex]\[ x = \left\{\frac{\pi}{6}, \frac{11\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}\right\} \][/tex]
So the correct choice is:
A. [tex]\( x = \frac{\pi}{6}, \frac{11\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6} \)[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.