Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Certainly! Let's match each absolute value inequality with its corresponding solution set:
1. Inequality: \(3|x+5|-1 \leq 8\)
To find the solution set, let's isolate the absolute value expression. First, we'll add 1 to both sides to get:
[tex]\[ 3|x+5| \leq 9 \][/tex]
Then, we'll divide both sides by 3:
[tex]\[ |x+5| \leq 3 \][/tex]
The solution to \( |x+5| \leq 3 \) is:
[tex]\[ -3 \leq x+5 \leq 3 \][/tex]
Subtracting 5 from all parts of the inequality, we get:
[tex]\[ -8 \leq x \leq -2 \][/tex]
So, the matching solution is:
[tex]\[ -8 \leq x \leq -2 \][/tex]
2. Inequality: \(|2x-6|-4 \geq 6\)
First, add 4 to both sides:
[tex]\[ |2x-6| \geq 10 \][/tex]
This gives us two cases to consider:
[tex]\[ 2x - 6 \geq 10 \quad \text{or} \quad 2x - 6 \leq -10 \][/tex]
Solving for \(x\), we get:
[tex]\[ 2x \geq 16 \implies x \geq 8 \quad \text{or} \quad 2x \leq -4 \implies x \leq -2 \][/tex]
Therefore, the solution set is:
[tex]\[ x \leq -2 \text{ or } x \geq 8 \][/tex]
3. Inequality: \(4|x-3|+1 \leq 9\)
First, subtract 1 from both sides:
[tex]\[ 4|x-3| \leq 8 \][/tex]
Then, divide both sides by 4:
[tex]\[ |x-3| \leq 2 \][/tex]
Solving the absolute value inequality, we get:
[tex]\[ -2 \leq x-3 \leq 2 \][/tex]
Adding 3 to all parts of the inequality, we get:
[tex]\[ 1 \leq x \leq 5 \][/tex]
So, the solution is:
[tex]\[ 1 \leq x \leq 5 \][/tex]
4. Inequality: \(3|x-9|-8 \geq 4\)
First, add 8 to both sides:
[tex]\[ 3|x-9| \geq 12 \][/tex]
Then, divide both sides by 3:
[tex]\[ |x-9| \geq 4 \][/tex]
This gives us two cases to consider:
[tex]\[ x-9 \geq 4 \quad \text{or} \quad x-9 \leq -4 \][/tex]
Solving for \(x\), we get:
[tex]\[ x \geq 13 \quad \text{or} \quad x \leq 5 \][/tex]
Therefore, the solution set is:
[tex]\[ x \leq 5 \text{ or } x \geq 13 \][/tex]
So, the matches are:
[tex]\[ \begin{array}{lcl} 3|x+5|-1 \leq 8 & \rightarrow & -8 \leq x \leq -2 \\ |2x-6|-4 \geq 6 & \rightarrow & x \leq-2 \text { or } x \geq 8 \\ 4|x-3|+1 \leq 9 & \rightarrow & 1 \leq x \leq 5 \\ 3|x-9|-8 \geq 4 & \rightarrow & x \leq 5 \text { or } x \geq 13 \\ \end{array} \][/tex]
1. Inequality: \(3|x+5|-1 \leq 8\)
To find the solution set, let's isolate the absolute value expression. First, we'll add 1 to both sides to get:
[tex]\[ 3|x+5| \leq 9 \][/tex]
Then, we'll divide both sides by 3:
[tex]\[ |x+5| \leq 3 \][/tex]
The solution to \( |x+5| \leq 3 \) is:
[tex]\[ -3 \leq x+5 \leq 3 \][/tex]
Subtracting 5 from all parts of the inequality, we get:
[tex]\[ -8 \leq x \leq -2 \][/tex]
So, the matching solution is:
[tex]\[ -8 \leq x \leq -2 \][/tex]
2. Inequality: \(|2x-6|-4 \geq 6\)
First, add 4 to both sides:
[tex]\[ |2x-6| \geq 10 \][/tex]
This gives us two cases to consider:
[tex]\[ 2x - 6 \geq 10 \quad \text{or} \quad 2x - 6 \leq -10 \][/tex]
Solving for \(x\), we get:
[tex]\[ 2x \geq 16 \implies x \geq 8 \quad \text{or} \quad 2x \leq -4 \implies x \leq -2 \][/tex]
Therefore, the solution set is:
[tex]\[ x \leq -2 \text{ or } x \geq 8 \][/tex]
3. Inequality: \(4|x-3|+1 \leq 9\)
First, subtract 1 from both sides:
[tex]\[ 4|x-3| \leq 8 \][/tex]
Then, divide both sides by 4:
[tex]\[ |x-3| \leq 2 \][/tex]
Solving the absolute value inequality, we get:
[tex]\[ -2 \leq x-3 \leq 2 \][/tex]
Adding 3 to all parts of the inequality, we get:
[tex]\[ 1 \leq x \leq 5 \][/tex]
So, the solution is:
[tex]\[ 1 \leq x \leq 5 \][/tex]
4. Inequality: \(3|x-9|-8 \geq 4\)
First, add 8 to both sides:
[tex]\[ 3|x-9| \geq 12 \][/tex]
Then, divide both sides by 3:
[tex]\[ |x-9| \geq 4 \][/tex]
This gives us two cases to consider:
[tex]\[ x-9 \geq 4 \quad \text{or} \quad x-9 \leq -4 \][/tex]
Solving for \(x\), we get:
[tex]\[ x \geq 13 \quad \text{or} \quad x \leq 5 \][/tex]
Therefore, the solution set is:
[tex]\[ x \leq 5 \text{ or } x \geq 13 \][/tex]
So, the matches are:
[tex]\[ \begin{array}{lcl} 3|x+5|-1 \leq 8 & \rightarrow & -8 \leq x \leq -2 \\ |2x-6|-4 \geq 6 & \rightarrow & x \leq-2 \text { or } x \geq 8 \\ 4|x-3|+1 \leq 9 & \rightarrow & 1 \leq x \leq 5 \\ 3|x-9|-8 \geq 4 & \rightarrow & x \leq 5 \text { or } x \geq 13 \\ \end{array} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.