Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to use the triangle inequality theorem, which states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side. For a triangle with sides \(a\), \(b\), and \(x\) (where \(x\) is the length of the third side), the inequalities are as follows:
1. \(a + b > x\)
2. \(a + x > b\)
3. \(b + x > a\)
Given the specific side lengths \(a = 200\) units and \(b = 300\) units, we can substitute these values into the inequalities.
1. \(200 + 300 > x\)
2. \(200 + x > 300\)
3. \(300 + x > 200\)
We simplify these inequalities step by step:
1. \(500 > x\) or \(x < 500\)
2. \(200 + x > 300 \implies x > 300 - 200 \implies x > 100\)
3. \(300 + x > 200 \implies x > 200 - 300 \implies x > -100\) (but this is always true since \(x\) must be positive)
Thus, combining the useful inequalities from steps 1 and 2, we get:
[tex]\[ 100 < x < 500 \][/tex]
So, the range of the possible lengths for the third side, [tex]\(x\)[/tex], is [tex]\(100 < x < 500\)[/tex].
1. \(a + b > x\)
2. \(a + x > b\)
3. \(b + x > a\)
Given the specific side lengths \(a = 200\) units and \(b = 300\) units, we can substitute these values into the inequalities.
1. \(200 + 300 > x\)
2. \(200 + x > 300\)
3. \(300 + x > 200\)
We simplify these inequalities step by step:
1. \(500 > x\) or \(x < 500\)
2. \(200 + x > 300 \implies x > 300 - 200 \implies x > 100\)
3. \(300 + x > 200 \implies x > 200 - 300 \implies x > -100\) (but this is always true since \(x\) must be positive)
Thus, combining the useful inequalities from steps 1 and 2, we get:
[tex]\[ 100 < x < 500 \][/tex]
So, the range of the possible lengths for the third side, [tex]\(x\)[/tex], is [tex]\(100 < x < 500\)[/tex].
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.