Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the value that correctly fills in the blank in the given hyperbola equation \(\frac{x^2}{24^2} - \frac{y^2}{[\ldots]^2} = 1\), we will go through the necessary steps to determine the missing value step-by-step.
1. Identify the given values:
- The term \(\frac{x^2}{24^2}\) tells us that \(a^2 = 24^2\), so \(a = 24\).
- The directrix is given as \(x = \frac{576}{26}\).
2. Determine \(c\):
- For a hyperbola with the equation \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\), and directrix \(x = \frac{a^2}{c}\), we can set up the equation for the directrix:
[tex]\[ x = \frac{a^2}{c} \][/tex]
- We know \(a^2 = 576\), so:
[tex]\[ \frac{576}{c} = \frac{576}{26} \][/tex]
- Solving for \(c\):
[tex]\[ c = 26 \][/tex]
3. Find \(b^2\):
- For hyperbolas, the relationship between \(a\), \(b\), and \(c\) is given by:
[tex]\[ c^2 = a^2 + b^2 \][/tex]
- Substitute the known values \(a = 24\) and \(c = 26\):
[tex]\[ 26^2 = 24^2 + b^2 \][/tex]
- Calculate \(26^2\) and \(24^2\):
[tex]\[ 676 = 576 + b^2 \][/tex]
- Solve for \(b^2\):
[tex]\[ b^2 = 676 - 576 = 100 \][/tex]
4. State the complete equation:
- Now that we have \(b^2 = 100\), we can fill in the blank in the original equation:
[tex]\[ \frac{x^2}{24^2} - \frac{y^2}{100} = 1 \][/tex]
Thus, the positive value that correctly fills in the blank in the equation [tex]\(\frac{x^2}{24^2} - \frac{y^2}{[\ldots]^2} = 1\)[/tex] is [tex]\(10\)[/tex] (since [tex]\(10^2 = 100\)[/tex]).
1. Identify the given values:
- The term \(\frac{x^2}{24^2}\) tells us that \(a^2 = 24^2\), so \(a = 24\).
- The directrix is given as \(x = \frac{576}{26}\).
2. Determine \(c\):
- For a hyperbola with the equation \(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\), and directrix \(x = \frac{a^2}{c}\), we can set up the equation for the directrix:
[tex]\[ x = \frac{a^2}{c} \][/tex]
- We know \(a^2 = 576\), so:
[tex]\[ \frac{576}{c} = \frac{576}{26} \][/tex]
- Solving for \(c\):
[tex]\[ c = 26 \][/tex]
3. Find \(b^2\):
- For hyperbolas, the relationship between \(a\), \(b\), and \(c\) is given by:
[tex]\[ c^2 = a^2 + b^2 \][/tex]
- Substitute the known values \(a = 24\) and \(c = 26\):
[tex]\[ 26^2 = 24^2 + b^2 \][/tex]
- Calculate \(26^2\) and \(24^2\):
[tex]\[ 676 = 576 + b^2 \][/tex]
- Solve for \(b^2\):
[tex]\[ b^2 = 676 - 576 = 100 \][/tex]
4. State the complete equation:
- Now that we have \(b^2 = 100\), we can fill in the blank in the original equation:
[tex]\[ \frac{x^2}{24^2} - \frac{y^2}{100} = 1 \][/tex]
Thus, the positive value that correctly fills in the blank in the equation [tex]\(\frac{x^2}{24^2} - \frac{y^2}{[\ldots]^2} = 1\)[/tex] is [tex]\(10\)[/tex] (since [tex]\(10^2 = 100\)[/tex]).
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.