Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the expression \((f+g)(x)\), we need to add the given functions \(f(x)\) and \(g(x)\) together. Let's break this down step by step.
Given:
[tex]\[ f(x) = 4x^2 + 7x - 3 \][/tex]
[tex]\[ g(x) = 6x^3 - 7x^2 - 5 \][/tex]
We need to add these functions together term by term.
1. First, identify the powers of \(x\) in each function and their coefficients:
For \(f(x)\):
[tex]\[ f(x) = 4x^2 + 7x - 3 \][/tex]
- Coefficient of \(x^2\): \(4\)
- Coefficient of \(x\): \(7\)
- Constant term: \(-3\)
For \(g(x)\):
[tex]\[ g(x) = 6x^3 - 7x^2 - 5 \][/tex]
- Coefficient of \(x^3\): \(6\)
- Coefficient of \(x^2\): \(-7\)
- Constant term: \(-5\)
2. Next, add the coefficients of terms with the same powers of \(x\):
- For \(x^3\):
[tex]\[ \text{Coefficient of } x^3 = 6 \][/tex]
- For \(x^2\):
[tex]\[ \text{Coefficient of } x^2 = 4 - 7 = -3 \][/tex]
- For \(x\):
[tex]\[ \text{Coefficient of } x = 7 \][/tex]
- For the constant term:
[tex]\[ \text{Constant term} = -3 - 5 = -8 \][/tex]
3. Combine these results to write \((f+g)(x)\):
So, \((f+g)(x)\) is:
[tex]\[ (f+g)(x) = 6x^3 - 3x^2 + 7x - 8 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{6x^3 - 3x^2 + 7x - 8} \][/tex]
Comparing our result with the given options, we see that it matches option A:
[tex]\[ (f+g)(x)=6 x^3-3 x^2+7 x-8 \][/tex]
Therefore, the correct choice is:
A. [tex]\((f+g)(x)=6 x^3-3 x^2+7 x-8\)[/tex]
Given:
[tex]\[ f(x) = 4x^2 + 7x - 3 \][/tex]
[tex]\[ g(x) = 6x^3 - 7x^2 - 5 \][/tex]
We need to add these functions together term by term.
1. First, identify the powers of \(x\) in each function and their coefficients:
For \(f(x)\):
[tex]\[ f(x) = 4x^2 + 7x - 3 \][/tex]
- Coefficient of \(x^2\): \(4\)
- Coefficient of \(x\): \(7\)
- Constant term: \(-3\)
For \(g(x)\):
[tex]\[ g(x) = 6x^3 - 7x^2 - 5 \][/tex]
- Coefficient of \(x^3\): \(6\)
- Coefficient of \(x^2\): \(-7\)
- Constant term: \(-5\)
2. Next, add the coefficients of terms with the same powers of \(x\):
- For \(x^3\):
[tex]\[ \text{Coefficient of } x^3 = 6 \][/tex]
- For \(x^2\):
[tex]\[ \text{Coefficient of } x^2 = 4 - 7 = -3 \][/tex]
- For \(x\):
[tex]\[ \text{Coefficient of } x = 7 \][/tex]
- For the constant term:
[tex]\[ \text{Constant term} = -3 - 5 = -8 \][/tex]
3. Combine these results to write \((f+g)(x)\):
So, \((f+g)(x)\) is:
[tex]\[ (f+g)(x) = 6x^3 - 3x^2 + 7x - 8 \][/tex]
Thus, the correct answer is:
[tex]\[ \boxed{6x^3 - 3x^2 + 7x - 8} \][/tex]
Comparing our result with the given options, we see that it matches option A:
[tex]\[ (f+g)(x)=6 x^3-3 x^2+7 x-8 \][/tex]
Therefore, the correct choice is:
A. [tex]\((f+g)(x)=6 x^3-3 x^2+7 x-8\)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.