Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the values of \(\sin \theta\) and \(\tan \theta\) given that \(\cot \theta = \frac{1}{8}\) and assuming that \(\theta\) is an acute angle, follow these steps:
1. Understand the given information:
- \(\cot \theta = \frac{1}{8}\).
2. Relate cotangent to tangent:
- We know that \(\cot \theta = \frac{1}{\tan \theta}\).
- Therefore, \(\tan \theta = \frac{1}{\cot \theta} = \frac{1}{\frac{1}{8}} = 8\).
3. Use the Pythagorean Identity:
- The Pythagorean identity states that \(\sin^2 \theta + \cos^2 \theta = 1\).
- We can also express \(\tan \theta\) in terms of sine and cosine: \(\tan \theta = \frac{\sin \theta}{\cos \theta}\).
4. Relate tangent and cosine:
- We know \(\tan \theta = 8\).
- Thus, \(\sin \theta = 8 \cos \theta\).
5. Substitute into Pythagorean Identity:
- Substitute \(\sin \theta = 8 \cos \theta\) into \(\sin^2 \theta + \cos^2 \theta = 1\):
[tex]\[ (8 \cos \theta)^2 + \cos^2 \theta = 1 \][/tex]
[tex]\[ 64 \cos^2 \theta + \cos^2 \theta = 1 \][/tex]
[tex]\[ 65 \cos^2 \theta = 1 \][/tex]
- Solve for \(\cos \theta\):
[tex]\[ \cos^2 \theta = \frac{1}{65} \][/tex]
[tex]\[ \cos \theta = \sqrt{\frac{1}{65}} \approx 0.1240347346 \][/tex]
6. Find \(\sin \theta\):
- Using \(\sin \theta = 8 \cos \theta\):
[tex]\[ \sin \theta = 8 \times 0.1240347346 \approx 0.9922778767 \][/tex]
So, the values are:
- \(\sin \theta \approx 0.9922778767\)
- \(\tan \theta = 8\)
Thus, [tex]\(\sin \theta \approx 0.9922778767\)[/tex] and [tex]\(\tan \theta = 8\)[/tex] for the given condition [tex]\(\cot \theta = \frac{1}{8}\)[/tex].
1. Understand the given information:
- \(\cot \theta = \frac{1}{8}\).
2. Relate cotangent to tangent:
- We know that \(\cot \theta = \frac{1}{\tan \theta}\).
- Therefore, \(\tan \theta = \frac{1}{\cot \theta} = \frac{1}{\frac{1}{8}} = 8\).
3. Use the Pythagorean Identity:
- The Pythagorean identity states that \(\sin^2 \theta + \cos^2 \theta = 1\).
- We can also express \(\tan \theta\) in terms of sine and cosine: \(\tan \theta = \frac{\sin \theta}{\cos \theta}\).
4. Relate tangent and cosine:
- We know \(\tan \theta = 8\).
- Thus, \(\sin \theta = 8 \cos \theta\).
5. Substitute into Pythagorean Identity:
- Substitute \(\sin \theta = 8 \cos \theta\) into \(\sin^2 \theta + \cos^2 \theta = 1\):
[tex]\[ (8 \cos \theta)^2 + \cos^2 \theta = 1 \][/tex]
[tex]\[ 64 \cos^2 \theta + \cos^2 \theta = 1 \][/tex]
[tex]\[ 65 \cos^2 \theta = 1 \][/tex]
- Solve for \(\cos \theta\):
[tex]\[ \cos^2 \theta = \frac{1}{65} \][/tex]
[tex]\[ \cos \theta = \sqrt{\frac{1}{65}} \approx 0.1240347346 \][/tex]
6. Find \(\sin \theta\):
- Using \(\sin \theta = 8 \cos \theta\):
[tex]\[ \sin \theta = 8 \times 0.1240347346 \approx 0.9922778767 \][/tex]
So, the values are:
- \(\sin \theta \approx 0.9922778767\)
- \(\tan \theta = 8\)
Thus, [tex]\(\sin \theta \approx 0.9922778767\)[/tex] and [tex]\(\tan \theta = 8\)[/tex] for the given condition [tex]\(\cot \theta = \frac{1}{8}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.