Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the function \( g(x) \) from the parent function \( f(x) = \frac{1}{x} \) after shifting 4 units up and 3 units to the left, we need to apply the appropriate transformations to the function.
### Step-by-Step Solution:
1. Shifting the graph 3 units to the left:
- When we shift a function horizontally by \( h \) units to the left, we replace \( x \) with \( x + h \) in the equation of the function.
- Here, \( h = 3 \), so we replace \( x \) with \( x + 3 \) in the parent function \( f(x) = \frac{1}{x} \).
[tex]\[ f(x) \Rightarrow f(x + 3) = \frac{1}{x + 3} \][/tex]
2. Shifting the graph 4 units up:
- When we shift a function vertically by \( k \) units up, we add \( k \) to the function.
- Here, \( k = 4 \), so we add 4 to the transformed function from the previous step.
[tex]\[ \frac{1}{x + 3} \Rightarrow \frac{1}{x + 3} + 4 \][/tex]
Thus, after shifting \( \frac{1}{x} \) 3 units to the left and 4 units up, the resulting function \( g(x) \) is:
[tex]\[ g(x) = \frac{1}{x + 3} + 4 \][/tex]
### Conclusion:
The function \( g(x) \) can be constructed by applying the specified transformations to the parent function \( f(x) \). Comparing this to the options given:
- A. \( g(x) = \frac{1}{x-3} + 4 \)
- B. \( g(x) = \frac{1}{x+3} + 4 \)
- C. \( g(x) = \frac{1}{x-4} + 3 \)
- D. \( g(x) = \frac{1}{x+4} + 3 \)
The correct function is given by option:
[tex]\[ \boxed{B} \][/tex]
### Step-by-Step Solution:
1. Shifting the graph 3 units to the left:
- When we shift a function horizontally by \( h \) units to the left, we replace \( x \) with \( x + h \) in the equation of the function.
- Here, \( h = 3 \), so we replace \( x \) with \( x + 3 \) in the parent function \( f(x) = \frac{1}{x} \).
[tex]\[ f(x) \Rightarrow f(x + 3) = \frac{1}{x + 3} \][/tex]
2. Shifting the graph 4 units up:
- When we shift a function vertically by \( k \) units up, we add \( k \) to the function.
- Here, \( k = 4 \), so we add 4 to the transformed function from the previous step.
[tex]\[ \frac{1}{x + 3} \Rightarrow \frac{1}{x + 3} + 4 \][/tex]
Thus, after shifting \( \frac{1}{x} \) 3 units to the left and 4 units up, the resulting function \( g(x) \) is:
[tex]\[ g(x) = \frac{1}{x + 3} + 4 \][/tex]
### Conclusion:
The function \( g(x) \) can be constructed by applying the specified transformations to the parent function \( f(x) \). Comparing this to the options given:
- A. \( g(x) = \frac{1}{x-3} + 4 \)
- B. \( g(x) = \frac{1}{x+3} + 4 \)
- C. \( g(x) = \frac{1}{x-4} + 3 \)
- D. \( g(x) = \frac{1}{x+4} + 3 \)
The correct function is given by option:
[tex]\[ \boxed{B} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.