Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the function \( g(x) \) from the parent function \( f(x) = \frac{1}{x} \) after shifting 4 units up and 3 units to the left, we need to apply the appropriate transformations to the function.
### Step-by-Step Solution:
1. Shifting the graph 3 units to the left:
- When we shift a function horizontally by \( h \) units to the left, we replace \( x \) with \( x + h \) in the equation of the function.
- Here, \( h = 3 \), so we replace \( x \) with \( x + 3 \) in the parent function \( f(x) = \frac{1}{x} \).
[tex]\[ f(x) \Rightarrow f(x + 3) = \frac{1}{x + 3} \][/tex]
2. Shifting the graph 4 units up:
- When we shift a function vertically by \( k \) units up, we add \( k \) to the function.
- Here, \( k = 4 \), so we add 4 to the transformed function from the previous step.
[tex]\[ \frac{1}{x + 3} \Rightarrow \frac{1}{x + 3} + 4 \][/tex]
Thus, after shifting \( \frac{1}{x} \) 3 units to the left and 4 units up, the resulting function \( g(x) \) is:
[tex]\[ g(x) = \frac{1}{x + 3} + 4 \][/tex]
### Conclusion:
The function \( g(x) \) can be constructed by applying the specified transformations to the parent function \( f(x) \). Comparing this to the options given:
- A. \( g(x) = \frac{1}{x-3} + 4 \)
- B. \( g(x) = \frac{1}{x+3} + 4 \)
- C. \( g(x) = \frac{1}{x-4} + 3 \)
- D. \( g(x) = \frac{1}{x+4} + 3 \)
The correct function is given by option:
[tex]\[ \boxed{B} \][/tex]
### Step-by-Step Solution:
1. Shifting the graph 3 units to the left:
- When we shift a function horizontally by \( h \) units to the left, we replace \( x \) with \( x + h \) in the equation of the function.
- Here, \( h = 3 \), so we replace \( x \) with \( x + 3 \) in the parent function \( f(x) = \frac{1}{x} \).
[tex]\[ f(x) \Rightarrow f(x + 3) = \frac{1}{x + 3} \][/tex]
2. Shifting the graph 4 units up:
- When we shift a function vertically by \( k \) units up, we add \( k \) to the function.
- Here, \( k = 4 \), so we add 4 to the transformed function from the previous step.
[tex]\[ \frac{1}{x + 3} \Rightarrow \frac{1}{x + 3} + 4 \][/tex]
Thus, after shifting \( \frac{1}{x} \) 3 units to the left and 4 units up, the resulting function \( g(x) \) is:
[tex]\[ g(x) = \frac{1}{x + 3} + 4 \][/tex]
### Conclusion:
The function \( g(x) \) can be constructed by applying the specified transformations to the parent function \( f(x) \). Comparing this to the options given:
- A. \( g(x) = \frac{1}{x-3} + 4 \)
- B. \( g(x) = \frac{1}{x+3} + 4 \)
- C. \( g(x) = \frac{1}{x-4} + 3 \)
- D. \( g(x) = \frac{1}{x+4} + 3 \)
The correct function is given by option:
[tex]\[ \boxed{B} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.