Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's explore this step by step.
Given:
- \( A \) is a square matrix such that \( A^2 = A \).
- We need to find the expression for \( (1 + A)^3 - 7A \).
First, let's understand the property of \( A \):
- Since \( A^2 = A \), \( A \) is known as an idempotent matrix.
Now, let's simplify the expression \( (1 + A)^3 - 7A \) step by step.
1. We will use the binomial expansion to expand \( (1 + A)^3 \).
[tex]\[ (1 + A)^3 = 1 + 3A + 3A^2 + A^3 \][/tex]
2. We know from the given property of the matrix \( A \) that \( A^2 = A \). Therefore:
[tex]\[ A^2 = A \quad \text{and} \quad A^3 = A^2 \cdot A = A \cdot A = A \][/tex]
3. Substituting these results back into the binomial expansion:
[tex]\[ (1 + A)^3 = 1 + 3A + 3A + A = 1 + 3A + 3A + A \][/tex]
4. Combine like terms:
[tex]\[ (1 + A)^3 = 1 + 7A \][/tex]
Now, we need to find \( (1 + A)^3 - 7A \):
[tex]\[ (1 + A)^3 - 7A = (1 + 7A) - 7A \][/tex]
5. Simplify by subtracting \( 7A \):
[tex]\[ (1 + 7A) - 7A = 1 + 7A - 7A = 1 \][/tex]
Therefore, the expression \( (1 + A)^3 - 7A \) simplifies to:
[tex]\[ \boxed{1} \][/tex]
Given:
- \( A \) is a square matrix such that \( A^2 = A \).
- We need to find the expression for \( (1 + A)^3 - 7A \).
First, let's understand the property of \( A \):
- Since \( A^2 = A \), \( A \) is known as an idempotent matrix.
Now, let's simplify the expression \( (1 + A)^3 - 7A \) step by step.
1. We will use the binomial expansion to expand \( (1 + A)^3 \).
[tex]\[ (1 + A)^3 = 1 + 3A + 3A^2 + A^3 \][/tex]
2. We know from the given property of the matrix \( A \) that \( A^2 = A \). Therefore:
[tex]\[ A^2 = A \quad \text{and} \quad A^3 = A^2 \cdot A = A \cdot A = A \][/tex]
3. Substituting these results back into the binomial expansion:
[tex]\[ (1 + A)^3 = 1 + 3A + 3A + A = 1 + 3A + 3A + A \][/tex]
4. Combine like terms:
[tex]\[ (1 + A)^3 = 1 + 7A \][/tex]
Now, we need to find \( (1 + A)^3 - 7A \):
[tex]\[ (1 + A)^3 - 7A = (1 + 7A) - 7A \][/tex]
5. Simplify by subtracting \( 7A \):
[tex]\[ (1 + 7A) - 7A = 1 + 7A - 7A = 1 \][/tex]
Therefore, the expression \( (1 + A)^3 - 7A \) simplifies to:
[tex]\[ \boxed{1} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.