Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the domain and range of the inverse function \( h^{-1}(x) \) given the domain and range of \( h(x) \), we need to understand the relationship between a function and its inverse.
For a function \( h(x) \), the domain is the set of all possible input values (\( x \)) for which the function is defined, and the range is the set of all possible output values (\( y \)) that the function can produce. These can be denoted as:
- Domain of \( h(x) \): \( x < 5 \)
- Range of \( h(x) \): \( y < 4 \)
When we deal with the inverse function \( h^{-1}(x) \), the domain and range of the inverse function swap places with the range and domain of the original function respectively. This means:
- The domain of \( h^{-1}(x) \) will be the range of \( h(x) \).
- The range of \( h^{-1}(x) \) will be the domain of \( h(x) \).
Given the domain and range of \( h(x) \) as:
- Domain of \( h(x) \): \( x < 5 \)
- Range of \( h(x) \): \( y < 4 \)
We can now determine the domain and range of \( h^{-1}(x) \):
- The domain of \( h^{-1}(x) \) is the range of \( h(x) \), which is \( x < 4 \).
- The range of \( h^{-1}(x) \) is the domain of \( h(x) \), which is \( y < 5 \).
Therefore, the correct choice is:
D.
- Domain: \( x < 4 \)
- Range: \( y < 5 \)
Thus, the domain and range of the inverse function \( h^{-1}(x) \) are:
[tex]\[ \boxed{\text{Domain: } x < 4} \][/tex]
[tex]\[ \boxed{\text{Range: } y < 5} \][/tex]
For a function \( h(x) \), the domain is the set of all possible input values (\( x \)) for which the function is defined, and the range is the set of all possible output values (\( y \)) that the function can produce. These can be denoted as:
- Domain of \( h(x) \): \( x < 5 \)
- Range of \( h(x) \): \( y < 4 \)
When we deal with the inverse function \( h^{-1}(x) \), the domain and range of the inverse function swap places with the range and domain of the original function respectively. This means:
- The domain of \( h^{-1}(x) \) will be the range of \( h(x) \).
- The range of \( h^{-1}(x) \) will be the domain of \( h(x) \).
Given the domain and range of \( h(x) \) as:
- Domain of \( h(x) \): \( x < 5 \)
- Range of \( h(x) \): \( y < 4 \)
We can now determine the domain and range of \( h^{-1}(x) \):
- The domain of \( h^{-1}(x) \) is the range of \( h(x) \), which is \( x < 4 \).
- The range of \( h^{-1}(x) \) is the domain of \( h(x) \), which is \( y < 5 \).
Therefore, the correct choice is:
D.
- Domain: \( x < 4 \)
- Range: \( y < 5 \)
Thus, the domain and range of the inverse function \( h^{-1}(x) \) are:
[tex]\[ \boxed{\text{Domain: } x < 4} \][/tex]
[tex]\[ \boxed{\text{Range: } y < 5} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.