Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the \( x \)-coordinate of the point that divides the directed line segment joining points \( K \) and \( J \) in the ratio \( 1:3 \), we will use the section formula for the \( x \)-coordinate. The formula is given by:
[tex]\[ x = \left(\frac{m}{m+n}\right)\left(x_2-x_1\right) + x_1 \][/tex]
Here, \( K \) and \( J \) are points on the coordinate plane with \( K \) having coordinates \( (x_1, y_1) \) and \( J \) having coordinates \( (x_2, y_2) \). The ratio in which the line segment is divided is given by \( m:n \).
Given:
- \( K \) has the coordinates \( (x_1, y_1) = (-1, y_1) \)
- \( J \) has the coordinates \( (x_2, y_2) = (3, y_2) \)
- The ratio \( m:n = 1:3 \)
Let's plug in these values into the formula:
[tex]\[ x_1 = -1 \][/tex]
[tex]\[ x_2 = 3 \][/tex]
[tex]\[ m = 1 \][/tex]
[tex]\[ n = 3 \][/tex]
Now substitute these values into the formula:
[tex]\[ x = \left(\frac{1}{1+3}\right)\left(3 - (-1)\right) + (-1) \][/tex]
[tex]\[ x = \left(\frac{1}{4}\right) \times (3 + 1) + (-1) \][/tex]
[tex]\[ x = \left(\frac{1}{4}\right) \times 4 + (-1) \][/tex]
[tex]\[ x = 1 + (-1) \][/tex]
[tex]\[ x = 0 \][/tex]
Therefore, the [tex]\( x \)[/tex]-coordinate of the point that divides the directed line segment from [tex]\( K \)[/tex] to [tex]\( J \)[/tex] into a ratio of [tex]\( 1:3 \)[/tex] is [tex]\( \boxed{0} \)[/tex].
[tex]\[ x = \left(\frac{m}{m+n}\right)\left(x_2-x_1\right) + x_1 \][/tex]
Here, \( K \) and \( J \) are points on the coordinate plane with \( K \) having coordinates \( (x_1, y_1) \) and \( J \) having coordinates \( (x_2, y_2) \). The ratio in which the line segment is divided is given by \( m:n \).
Given:
- \( K \) has the coordinates \( (x_1, y_1) = (-1, y_1) \)
- \( J \) has the coordinates \( (x_2, y_2) = (3, y_2) \)
- The ratio \( m:n = 1:3 \)
Let's plug in these values into the formula:
[tex]\[ x_1 = -1 \][/tex]
[tex]\[ x_2 = 3 \][/tex]
[tex]\[ m = 1 \][/tex]
[tex]\[ n = 3 \][/tex]
Now substitute these values into the formula:
[tex]\[ x = \left(\frac{1}{1+3}\right)\left(3 - (-1)\right) + (-1) \][/tex]
[tex]\[ x = \left(\frac{1}{4}\right) \times (3 + 1) + (-1) \][/tex]
[tex]\[ x = \left(\frac{1}{4}\right) \times 4 + (-1) \][/tex]
[tex]\[ x = 1 + (-1) \][/tex]
[tex]\[ x = 0 \][/tex]
Therefore, the [tex]\( x \)[/tex]-coordinate of the point that divides the directed line segment from [tex]\( K \)[/tex] to [tex]\( J \)[/tex] into a ratio of [tex]\( 1:3 \)[/tex] is [tex]\( \boxed{0} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.