Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

What is the [tex]$x$[/tex]-coordinate of the point that divides the directed line segment from [tex]$K$[/tex] to [tex]$J$[/tex] into a ratio of 1:3?

[tex]\[ x = \left(\frac{m}{m+n}\right)(x_2 - x_1) + x_1 \][/tex]

A. \(-1\)
B. \(3\)
C. \(7\)
D. [tex]\(11\)[/tex]


Sagot :

To determine the \( x \)-coordinate of the point that divides the directed line segment joining points \( K \) and \( J \) in the ratio \( 1:3 \), we will use the section formula for the \( x \)-coordinate. The formula is given by:

[tex]\[ x = \left(\frac{m}{m+n}\right)\left(x_2-x_1\right) + x_1 \][/tex]

Here, \( K \) and \( J \) are points on the coordinate plane with \( K \) having coordinates \( (x_1, y_1) \) and \( J \) having coordinates \( (x_2, y_2) \). The ratio in which the line segment is divided is given by \( m:n \).

Given:
- \( K \) has the coordinates \( (x_1, y_1) = (-1, y_1) \)
- \( J \) has the coordinates \( (x_2, y_2) = (3, y_2) \)
- The ratio \( m:n = 1:3 \)

Let's plug in these values into the formula:

[tex]\[ x_1 = -1 \][/tex]
[tex]\[ x_2 = 3 \][/tex]
[tex]\[ m = 1 \][/tex]
[tex]\[ n = 3 \][/tex]

Now substitute these values into the formula:

[tex]\[ x = \left(\frac{1}{1+3}\right)\left(3 - (-1)\right) + (-1) \][/tex]
[tex]\[ x = \left(\frac{1}{4}\right) \times (3 + 1) + (-1) \][/tex]
[tex]\[ x = \left(\frac{1}{4}\right) \times 4 + (-1) \][/tex]
[tex]\[ x = 1 + (-1) \][/tex]
[tex]\[ x = 0 \][/tex]

Therefore, the [tex]\( x \)[/tex]-coordinate of the point that divides the directed line segment from [tex]\( K \)[/tex] to [tex]\( J \)[/tex] into a ratio of [tex]\( 1:3 \)[/tex] is [tex]\( \boxed{0} \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.