Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

What is the [tex]$x$[/tex]-coordinate of the point that divides the directed line segment from [tex]$K$[/tex] to [tex]$J$[/tex] into a ratio of 1:3?

[tex]\[ x = \left(\frac{m}{m+n}\right)(x_2 - x_1) + x_1 \][/tex]

A. \(-1\)
B. \(3\)
C. \(7\)
D. [tex]\(11\)[/tex]

Sagot :

To determine the \( x \)-coordinate of the point that divides the directed line segment joining points \( K \) and \( J \) in the ratio \( 1:3 \), we will use the section formula for the \( x \)-coordinate. The formula is given by:

[tex]\[ x = \left(\frac{m}{m+n}\right)\left(x_2-x_1\right) + x_1 \][/tex]

Here, \( K \) and \( J \) are points on the coordinate plane with \( K \) having coordinates \( (x_1, y_1) \) and \( J \) having coordinates \( (x_2, y_2) \). The ratio in which the line segment is divided is given by \( m:n \).

Given:
- \( K \) has the coordinates \( (x_1, y_1) = (-1, y_1) \)
- \( J \) has the coordinates \( (x_2, y_2) = (3, y_2) \)
- The ratio \( m:n = 1:3 \)

Let's plug in these values into the formula:

[tex]\[ x_1 = -1 \][/tex]
[tex]\[ x_2 = 3 \][/tex]
[tex]\[ m = 1 \][/tex]
[tex]\[ n = 3 \][/tex]

Now substitute these values into the formula:

[tex]\[ x = \left(\frac{1}{1+3}\right)\left(3 - (-1)\right) + (-1) \][/tex]
[tex]\[ x = \left(\frac{1}{4}\right) \times (3 + 1) + (-1) \][/tex]
[tex]\[ x = \left(\frac{1}{4}\right) \times 4 + (-1) \][/tex]
[tex]\[ x = 1 + (-1) \][/tex]
[tex]\[ x = 0 \][/tex]

Therefore, the [tex]\( x \)[/tex]-coordinate of the point that divides the directed line segment from [tex]\( K \)[/tex] to [tex]\( J \)[/tex] into a ratio of [tex]\( 1:3 \)[/tex] is [tex]\( \boxed{0} \)[/tex].