Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which change to an object would double its potential energy, we need to understand the formula for gravitational potential energy, which is given by:
[tex]\[ \text{Potential Energy (PE)} = m \times g \times h \][/tex]
where \( m \) is the mass of the object, \( g \) is the acceleration due to gravity, and \( h \) is the height above the ground.
Now let's examine each of the given options:
A. Increasing its height to twice its original value
- If we increase the height to twice its original value, the new height is \( 2h \).
- The new potential energy would be: [tex]\[ \text{PE}_{\text{new}} = m \times g \times (2h) \][/tex]
- Simplifying this, we get: [tex]\[ \text{PE}_{\text{new}} = 2 \times (m \times g \times h) = 2 \text{PE} \][/tex]
- This means that the potential energy would be doubled.
B. Reducing its mass to one-half of its original value
- If we reduce the mass to one-half its original value, the new mass is \( \frac{m}{2} \).
- The new potential energy would be: [tex]\[ \text{PE}_{\text{new}} = \left(\frac{m}{2}\right) \times g \times h \][/tex]
- Simplifying this, we get: [tex]\[ \text{PE}_{\text{new}} = \frac{1}{2} \times (m \times g \times h) = \frac{1}{2} \text{PE} \][/tex]
- This means that the potential energy would be halved, not doubled.
C. Increasing its mass to four times its original value
- If we increase the mass to four times its original value, the new mass is \( 4m \).
- The new potential energy would be: [tex]\[ \text{PE}_{\text{new}} = (4m) \times g \times h \][/tex]
- Simplifying this, we get: [tex]\[ \text{PE}_{\text{new}} = 4 \times (m \times g \times h) = 4 \text{PE} \][/tex]
- This means that the potential energy would be quadrupled, not doubled.
D. Reducing its height to one-half of its original value
- If we reduce the height to one-half its original value, the new height is \( \frac{h}{2} \).
- The new potential energy would be: [tex]\[ \text{PE}_{\text{new}} = m \times g \times \left(\frac{h}{2}\right) \][/tex]
- Simplifying this, we get: [tex]\[ \text{PE}_{\text{new}} = \frac{1}{2} \times (m \times g \times h) = \frac{1}{2} \text{PE} \][/tex]
- This means that the potential energy would be halved, not doubled.
From these calculations, we can see that the correct choice is:
A. Increasing its height to twice its original value
This change will double the potential energy of the object.
[tex]\[ \text{Potential Energy (PE)} = m \times g \times h \][/tex]
where \( m \) is the mass of the object, \( g \) is the acceleration due to gravity, and \( h \) is the height above the ground.
Now let's examine each of the given options:
A. Increasing its height to twice its original value
- If we increase the height to twice its original value, the new height is \( 2h \).
- The new potential energy would be: [tex]\[ \text{PE}_{\text{new}} = m \times g \times (2h) \][/tex]
- Simplifying this, we get: [tex]\[ \text{PE}_{\text{new}} = 2 \times (m \times g \times h) = 2 \text{PE} \][/tex]
- This means that the potential energy would be doubled.
B. Reducing its mass to one-half of its original value
- If we reduce the mass to one-half its original value, the new mass is \( \frac{m}{2} \).
- The new potential energy would be: [tex]\[ \text{PE}_{\text{new}} = \left(\frac{m}{2}\right) \times g \times h \][/tex]
- Simplifying this, we get: [tex]\[ \text{PE}_{\text{new}} = \frac{1}{2} \times (m \times g \times h) = \frac{1}{2} \text{PE} \][/tex]
- This means that the potential energy would be halved, not doubled.
C. Increasing its mass to four times its original value
- If we increase the mass to four times its original value, the new mass is \( 4m \).
- The new potential energy would be: [tex]\[ \text{PE}_{\text{new}} = (4m) \times g \times h \][/tex]
- Simplifying this, we get: [tex]\[ \text{PE}_{\text{new}} = 4 \times (m \times g \times h) = 4 \text{PE} \][/tex]
- This means that the potential energy would be quadrupled, not doubled.
D. Reducing its height to one-half of its original value
- If we reduce the height to one-half its original value, the new height is \( \frac{h}{2} \).
- The new potential energy would be: [tex]\[ \text{PE}_{\text{new}} = m \times g \times \left(\frac{h}{2}\right) \][/tex]
- Simplifying this, we get: [tex]\[ \text{PE}_{\text{new}} = \frac{1}{2} \times (m \times g \times h) = \frac{1}{2} \text{PE} \][/tex]
- This means that the potential energy would be halved, not doubled.
From these calculations, we can see that the correct choice is:
A. Increasing its height to twice its original value
This change will double the potential energy of the object.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.