Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the second derivative \(\frac{d^2 y}{d x^2}\) of the function \(y = \sqrt[5]{x}\), follow these steps:
1. Rewrite the function in exponent form:
[tex]\[ y = x^{1/5} \][/tex]
2. Find the first derivative \(\frac{dy}{dx}\):
Using the power rule for differentiation, which states \(\frac{d}{dx} [x^n] = n x^{n-1}\):
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( x^{1/5} \right) = \frac{1}{5} x^{1/5 - 1} = \frac{1}{5} x^{-4/5} \][/tex]
3. Find the second derivative \(\frac{d^2 y}{d x^2}\):
Again, using the power rule for differentiation:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{dx} \left( \frac{1}{5} x^{-4/5} \right) \][/tex]
[tex]\[ \frac{d^2 y}{d x^2} = \frac{1}{5} \cdot \left( -\frac{4}{5} \right) x^{-4/5 - 1} = -\frac{4}{25} x^{-9/5} \][/tex]
Simplifying the exponent on \(x\):
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
Thus, the second derivative \(\frac{d^2 y}{d x^2}\) is:
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
1. Rewrite the function in exponent form:
[tex]\[ y = x^{1/5} \][/tex]
2. Find the first derivative \(\frac{dy}{dx}\):
Using the power rule for differentiation, which states \(\frac{d}{dx} [x^n] = n x^{n-1}\):
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( x^{1/5} \right) = \frac{1}{5} x^{1/5 - 1} = \frac{1}{5} x^{-4/5} \][/tex]
3. Find the second derivative \(\frac{d^2 y}{d x^2}\):
Again, using the power rule for differentiation:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{dx} \left( \frac{1}{5} x^{-4/5} \right) \][/tex]
[tex]\[ \frac{d^2 y}{d x^2} = \frac{1}{5} \cdot \left( -\frac{4}{5} \right) x^{-4/5 - 1} = -\frac{4}{25} x^{-9/5} \][/tex]
Simplifying the exponent on \(x\):
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
Thus, the second derivative \(\frac{d^2 y}{d x^2}\) is:
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.