Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the second derivative \(\frac{d^2 y}{d x^2}\) of the function \(y = \sqrt[5]{x}\), follow these steps:
1. Rewrite the function in exponent form:
[tex]\[ y = x^{1/5} \][/tex]
2. Find the first derivative \(\frac{dy}{dx}\):
Using the power rule for differentiation, which states \(\frac{d}{dx} [x^n] = n x^{n-1}\):
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( x^{1/5} \right) = \frac{1}{5} x^{1/5 - 1} = \frac{1}{5} x^{-4/5} \][/tex]
3. Find the second derivative \(\frac{d^2 y}{d x^2}\):
Again, using the power rule for differentiation:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{dx} \left( \frac{1}{5} x^{-4/5} \right) \][/tex]
[tex]\[ \frac{d^2 y}{d x^2} = \frac{1}{5} \cdot \left( -\frac{4}{5} \right) x^{-4/5 - 1} = -\frac{4}{25} x^{-9/5} \][/tex]
Simplifying the exponent on \(x\):
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
Thus, the second derivative \(\frac{d^2 y}{d x^2}\) is:
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
1. Rewrite the function in exponent form:
[tex]\[ y = x^{1/5} \][/tex]
2. Find the first derivative \(\frac{dy}{dx}\):
Using the power rule for differentiation, which states \(\frac{d}{dx} [x^n] = n x^{n-1}\):
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} \left( x^{1/5} \right) = \frac{1}{5} x^{1/5 - 1} = \frac{1}{5} x^{-4/5} \][/tex]
3. Find the second derivative \(\frac{d^2 y}{d x^2}\):
Again, using the power rule for differentiation:
[tex]\[ \frac{d^2 y}{d x^2} = \frac{d}{dx} \left( \frac{1}{5} x^{-4/5} \right) \][/tex]
[tex]\[ \frac{d^2 y}{d x^2} = \frac{1}{5} \cdot \left( -\frac{4}{5} \right) x^{-4/5 - 1} = -\frac{4}{25} x^{-9/5} \][/tex]
Simplifying the exponent on \(x\):
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
Thus, the second derivative \(\frac{d^2 y}{d x^2}\) is:
[tex]\[ \frac{d^2 y}{d x^2} = -\frac{4}{25} x^{-1.8} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.