Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's examine each given formula carefully to determine which one represents the arithmetic sequence where 5 is added to each term to find the next term.
1. Option 1: \( f(n+1) = f(n) + 5 \)
- In this formula, the next term \( f(n+1) \) is equal to the current term \( f(n) \) plus 5.
- This perfectly matches the description of an arithmetic sequence where 5 is added to each term to get the next term.
- Therefore, this formula is a valid recursive representation of the sequence.
2. Option 2: \( f(n+1) = f(n+5) \)
- In this formula, the next term \( f(n+1) \) is equal to the term 5 places ahead of the current term (i.e., \( f(n+5) \)).
- This does not represent an arithmetic sequence where a constant is added to each term to find the next term.
3. Option 3: \( f(n+1) = 5 f(n) \)
- In this formula, the next term \( f(n+1) \) is 5 times the current term \( f(n) \).
- This describes a geometric sequence where the ratio between terms is 5, not an arithmetic sequence.
4. Option 4: \( f(n+1) = f(5n) \)
- In this formula, the next term \( f(n+1) \) is equal to the term at position \( 5n \).
- This does not follow the pattern of adding a constant to each term.
Given these evaluations, the correct formula that represents Shaunta's arithmetic sequence, where 5 is added to each term to determine each successive term, is:
[tex]\[ f(n+1) = f(n) + 5 \][/tex]
Therefore, the right choice is the first formula.
1. Option 1: \( f(n+1) = f(n) + 5 \)
- In this formula, the next term \( f(n+1) \) is equal to the current term \( f(n) \) plus 5.
- This perfectly matches the description of an arithmetic sequence where 5 is added to each term to get the next term.
- Therefore, this formula is a valid recursive representation of the sequence.
2. Option 2: \( f(n+1) = f(n+5) \)
- In this formula, the next term \( f(n+1) \) is equal to the term 5 places ahead of the current term (i.e., \( f(n+5) \)).
- This does not represent an arithmetic sequence where a constant is added to each term to find the next term.
3. Option 3: \( f(n+1) = 5 f(n) \)
- In this formula, the next term \( f(n+1) \) is 5 times the current term \( f(n) \).
- This describes a geometric sequence where the ratio between terms is 5, not an arithmetic sequence.
4. Option 4: \( f(n+1) = f(5n) \)
- In this formula, the next term \( f(n+1) \) is equal to the term at position \( 5n \).
- This does not follow the pattern of adding a constant to each term.
Given these evaluations, the correct formula that represents Shaunta's arithmetic sequence, where 5 is added to each term to determine each successive term, is:
[tex]\[ f(n+1) = f(n) + 5 \][/tex]
Therefore, the right choice is the first formula.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.