Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's examine each given formula carefully to determine which one represents the arithmetic sequence where 5 is added to each term to find the next term.
1. Option 1: \( f(n+1) = f(n) + 5 \)
- In this formula, the next term \( f(n+1) \) is equal to the current term \( f(n) \) plus 5.
- This perfectly matches the description of an arithmetic sequence where 5 is added to each term to get the next term.
- Therefore, this formula is a valid recursive representation of the sequence.
2. Option 2: \( f(n+1) = f(n+5) \)
- In this formula, the next term \( f(n+1) \) is equal to the term 5 places ahead of the current term (i.e., \( f(n+5) \)).
- This does not represent an arithmetic sequence where a constant is added to each term to find the next term.
3. Option 3: \( f(n+1) = 5 f(n) \)
- In this formula, the next term \( f(n+1) \) is 5 times the current term \( f(n) \).
- This describes a geometric sequence where the ratio between terms is 5, not an arithmetic sequence.
4. Option 4: \( f(n+1) = f(5n) \)
- In this formula, the next term \( f(n+1) \) is equal to the term at position \( 5n \).
- This does not follow the pattern of adding a constant to each term.
Given these evaluations, the correct formula that represents Shaunta's arithmetic sequence, where 5 is added to each term to determine each successive term, is:
[tex]\[ f(n+1) = f(n) + 5 \][/tex]
Therefore, the right choice is the first formula.
1. Option 1: \( f(n+1) = f(n) + 5 \)
- In this formula, the next term \( f(n+1) \) is equal to the current term \( f(n) \) plus 5.
- This perfectly matches the description of an arithmetic sequence where 5 is added to each term to get the next term.
- Therefore, this formula is a valid recursive representation of the sequence.
2. Option 2: \( f(n+1) = f(n+5) \)
- In this formula, the next term \( f(n+1) \) is equal to the term 5 places ahead of the current term (i.e., \( f(n+5) \)).
- This does not represent an arithmetic sequence where a constant is added to each term to find the next term.
3. Option 3: \( f(n+1) = 5 f(n) \)
- In this formula, the next term \( f(n+1) \) is 5 times the current term \( f(n) \).
- This describes a geometric sequence where the ratio between terms is 5, not an arithmetic sequence.
4. Option 4: \( f(n+1) = f(5n) \)
- In this formula, the next term \( f(n+1) \) is equal to the term at position \( 5n \).
- This does not follow the pattern of adding a constant to each term.
Given these evaluations, the correct formula that represents Shaunta's arithmetic sequence, where 5 is added to each term to determine each successive term, is:
[tex]\[ f(n+1) = f(n) + 5 \][/tex]
Therefore, the right choice is the first formula.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.