Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure! Let's analyze the given options and determine which statement is correct regarding the dilation of a triangle by a scale factor of \( n = \frac{1}{3} \).
Dilation involves resizing a figure by a scale factor. The scale factor \( n \) will determine whether the figure enlarges, reduces, or stays the same size:
- If \( n > 1 \), the figure enlarges.
- If \( 0 < n < 1 \), the figure reduces.
- If \( n = 1 \), the figure remains the same size.
- If \( n < 0 \), the figure also involves a reflection in addition to resizing, but this case is less common in standard dilation problems.
Given the scale factor \( n = \frac{1}{3} \):
- \( \frac{1}{3} \) is greater than 0 but less than 1 (\( 0 < \frac{1}{3} < 1 \)).
- Therefore, this dilation results in a reduction of the triangle.
Now let's verify which option correctly describes this situation:
1. It is a reduction because \( n > 1 \).
- This statement is incorrect because \( n = \frac{1}{3} \) is not greater than 1.
2. It is a reduction because \( 0 < n < 1 \).
- This statement is correct because \( n = \frac{1}{3} \) satisfies the condition \( 0 < \frac{1}{3} < 1 \).
3. It is an enlargement because \( n > 1 \).
- This statement is incorrect because \( n = \frac{1}{3} \) is not greater than 1.
4. It is an enlargement because \( 0 > n > 1 \).
- This statement is incorrect because \( n = \frac{1}{3} \) is not in the range \( 0 > n > 1 \).
Thus, the correct statement regarding the dilation of the triangle is:
It is a reduction because [tex]\( 0 < n < 1 \)[/tex].
Dilation involves resizing a figure by a scale factor. The scale factor \( n \) will determine whether the figure enlarges, reduces, or stays the same size:
- If \( n > 1 \), the figure enlarges.
- If \( 0 < n < 1 \), the figure reduces.
- If \( n = 1 \), the figure remains the same size.
- If \( n < 0 \), the figure also involves a reflection in addition to resizing, but this case is less common in standard dilation problems.
Given the scale factor \( n = \frac{1}{3} \):
- \( \frac{1}{3} \) is greater than 0 but less than 1 (\( 0 < \frac{1}{3} < 1 \)).
- Therefore, this dilation results in a reduction of the triangle.
Now let's verify which option correctly describes this situation:
1. It is a reduction because \( n > 1 \).
- This statement is incorrect because \( n = \frac{1}{3} \) is not greater than 1.
2. It is a reduction because \( 0 < n < 1 \).
- This statement is correct because \( n = \frac{1}{3} \) satisfies the condition \( 0 < \frac{1}{3} < 1 \).
3. It is an enlargement because \( n > 1 \).
- This statement is incorrect because \( n = \frac{1}{3} \) is not greater than 1.
4. It is an enlargement because \( 0 > n > 1 \).
- This statement is incorrect because \( n = \frac{1}{3} \) is not in the range \( 0 > n > 1 \).
Thus, the correct statement regarding the dilation of the triangle is:
It is a reduction because [tex]\( 0 < n < 1 \)[/tex].
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.