At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine how much money Investor A would need to invest now to receive $50,000 after 6 years with an annual interest rate of 5%, we need to calculate the present value of this future amount using the present value formula for compound interest. Here's a step-by-step solution:
### Step-by-Step Solution:
1. Identify the given values:
- Future Value (\(FV\)): $50,000
- Annual Interest Rate (\(r\)): 5% or 0.05
- Number of Years (\(n\)): 6
2. Using the Present Value formula:
The formula to calculate the present value (\(PV\)) is:
[tex]\[ PV = \frac{FV}{(1 + r)^n} \][/tex]
3. Substitute the known values into the formula:
[tex]\[ PV = \frac{50,000}{(1 + 0.05)^6} \][/tex]
4. Calculate the compound factor:
[tex]\[ (1 + r)^n = (1 + 0.05)^6 \][/tex]
[tex]\[ (1.05)^6 \][/tex]
5. Compute \((1.05)^6\):
[tex]\[ (1.05)^6 \approx 1.3401 \][/tex]
6. Divide the future value by the compound factor:
[tex]\[ PV = \frac{50,000}{1.3401} \approx 37,310.77 \][/tex]
7. Round to the nearest cent:
[tex]\[ PV \approx 37,310.77 \][/tex]
So, Investor A would need to invest approximately [tex]$37,310.77 today to receive $[/tex]50,000 after 6 years, given an annual interest rate of 5% compounded annually.
### Step-by-Step Solution:
1. Identify the given values:
- Future Value (\(FV\)): $50,000
- Annual Interest Rate (\(r\)): 5% or 0.05
- Number of Years (\(n\)): 6
2. Using the Present Value formula:
The formula to calculate the present value (\(PV\)) is:
[tex]\[ PV = \frac{FV}{(1 + r)^n} \][/tex]
3. Substitute the known values into the formula:
[tex]\[ PV = \frac{50,000}{(1 + 0.05)^6} \][/tex]
4. Calculate the compound factor:
[tex]\[ (1 + r)^n = (1 + 0.05)^6 \][/tex]
[tex]\[ (1.05)^6 \][/tex]
5. Compute \((1.05)^6\):
[tex]\[ (1.05)^6 \approx 1.3401 \][/tex]
6. Divide the future value by the compound factor:
[tex]\[ PV = \frac{50,000}{1.3401} \approx 37,310.77 \][/tex]
7. Round to the nearest cent:
[tex]\[ PV \approx 37,310.77 \][/tex]
So, Investor A would need to invest approximately [tex]$37,310.77 today to receive $[/tex]50,000 after 6 years, given an annual interest rate of 5% compounded annually.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.