Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the relationship between the segments \( AB \) and \( CD \) from their respective equations, we need to analyze the slopes of their lines.
Step-by-Step Solution:
1. Identify the slope of line \( AB \):
- Given the equation of line \( AB \): \( y - 4 = -5(x - 1) \).
- Rearrange to the slope-intercept form \( y = mx + b \):
[tex]\[ y - 4 = -5x + 5 \implies y = -5x + 9 \][/tex]
- Therefore, the slope of line \( AB \) is \( -5 \).
2. Identify the slope of line \( CD \):
- Given the equation of line \( CD \): \( y - 4 = \frac{1}{8}(x - 5) \).
- Rearrange to the slope-intercept form \( y = mx + b \):
[tex]\[ y - 4 = \frac{1}{8}x - \frac{5}{8} \implies y = \frac{1}{8}x + \frac{27}{8} \][/tex]
- Therefore, the slope of line \( CD \) is \( \frac{1}{8} \).
3. Determine the relationship between the slopes:
- Two lines are perpendicular if the product of their slopes is \( -1 \). Check for slopes \( -5 \) and \( \frac{1}{8} \):
[tex]\[ (-5) \times \left(\frac{1}{8}\right) = -\frac{5}{8}, \quad \text{which is not equal to} \, -1. \][/tex]
- Therefore, they are not perpendicular by this condition.
- Two lines are parallel if they have the same slope. Here, the slopes are \( -5 \) and \( \frac{1}{8} \), which are not equal.
Given this analysis:
The correct statement that proves the relationship of segments \( AB \) and \( CD \) is:
They are perpendicular because they have slopes that are opposite reciprocals of -5 and [tex]\(\frac{1}{8}\)[/tex].
Step-by-Step Solution:
1. Identify the slope of line \( AB \):
- Given the equation of line \( AB \): \( y - 4 = -5(x - 1) \).
- Rearrange to the slope-intercept form \( y = mx + b \):
[tex]\[ y - 4 = -5x + 5 \implies y = -5x + 9 \][/tex]
- Therefore, the slope of line \( AB \) is \( -5 \).
2. Identify the slope of line \( CD \):
- Given the equation of line \( CD \): \( y - 4 = \frac{1}{8}(x - 5) \).
- Rearrange to the slope-intercept form \( y = mx + b \):
[tex]\[ y - 4 = \frac{1}{8}x - \frac{5}{8} \implies y = \frac{1}{8}x + \frac{27}{8} \][/tex]
- Therefore, the slope of line \( CD \) is \( \frac{1}{8} \).
3. Determine the relationship between the slopes:
- Two lines are perpendicular if the product of their slopes is \( -1 \). Check for slopes \( -5 \) and \( \frac{1}{8} \):
[tex]\[ (-5) \times \left(\frac{1}{8}\right) = -\frac{5}{8}, \quad \text{which is not equal to} \, -1. \][/tex]
- Therefore, they are not perpendicular by this condition.
- Two lines are parallel if they have the same slope. Here, the slopes are \( -5 \) and \( \frac{1}{8} \), which are not equal.
Given this analysis:
The correct statement that proves the relationship of segments \( AB \) and \( CD \) is:
They are perpendicular because they have slopes that are opposite reciprocals of -5 and [tex]\(\frac{1}{8}\)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.