Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find a polynomial function \( f(x) \) of the least degree with the given zeros, follow these steps:
1. Identify the given zeros:
- Zero at \( x = 3 \) with multiplicity 2.
- Zero at \( x = 4i \). Since the polynomial must have real coefficients, the complex conjugate \( x = -4i \) is also a zero.
2. Write the factors corresponding to each zero:
- For the zero at \( x = 3 \) with multiplicity 2: \((x - 3)^2\).
- For the zero at \( x = 4i \): \((x - 4i)\).
- For the zero at \( x = -4i \): \((x + 4i)\).
3. Combine all factors to form the polynomial:
Combine the factors to construct the polynomial:
[tex]\[ f(x) = (x - 3)^2 (x - 4i) (x + 4i) \][/tex]
4. Simplify the polynomial:
- First expand the complex conjugate pair product:
[tex]\[ (x - 4i)(x + 4i) = x^2 - (4i)^2 = x^2 - (-16) = x^2 + 16 \][/tex]
- The polynomial now is:
[tex]\[ f(x) = (x - 3)^2 (x^2 + 16) \][/tex]
5. Expand the remaining factor:
- Expand \((x - 3)^2\):
[tex]\[ (x - 3)^2 = x^2 - 6x + 9 \][/tex]
- Now multiply this with \(x^2 + 16\):
[tex]\[ f(x) = (x^2 - 6x + 9)(x^2 + 16) \][/tex]
6. Perform the final expansion:
- Multiply each term in the first polynomial by each term in the second polynomial:
[tex]\[ \begin{align*} f(x) &= x^2(x^2 + 16) - 6x(x^2 + 16) + 9(x^2 + 16) \\ &= x^4 + 16x^2 - 6x^3 - 96x + 9x^2 + 144 \\ &= x^4 - 6x^3 + 25x^2 - 96x + 144 \end{align*} \][/tex]
So, the polynomial of the least degree with the given properties is:
[tex]\[ f(x) = x^4 - 6x^3 + 25x^2 - 96x + 144 \][/tex]
1. Identify the given zeros:
- Zero at \( x = 3 \) with multiplicity 2.
- Zero at \( x = 4i \). Since the polynomial must have real coefficients, the complex conjugate \( x = -4i \) is also a zero.
2. Write the factors corresponding to each zero:
- For the zero at \( x = 3 \) with multiplicity 2: \((x - 3)^2\).
- For the zero at \( x = 4i \): \((x - 4i)\).
- For the zero at \( x = -4i \): \((x + 4i)\).
3. Combine all factors to form the polynomial:
Combine the factors to construct the polynomial:
[tex]\[ f(x) = (x - 3)^2 (x - 4i) (x + 4i) \][/tex]
4. Simplify the polynomial:
- First expand the complex conjugate pair product:
[tex]\[ (x - 4i)(x + 4i) = x^2 - (4i)^2 = x^2 - (-16) = x^2 + 16 \][/tex]
- The polynomial now is:
[tex]\[ f(x) = (x - 3)^2 (x^2 + 16) \][/tex]
5. Expand the remaining factor:
- Expand \((x - 3)^2\):
[tex]\[ (x - 3)^2 = x^2 - 6x + 9 \][/tex]
- Now multiply this with \(x^2 + 16\):
[tex]\[ f(x) = (x^2 - 6x + 9)(x^2 + 16) \][/tex]
6. Perform the final expansion:
- Multiply each term in the first polynomial by each term in the second polynomial:
[tex]\[ \begin{align*} f(x) &= x^2(x^2 + 16) - 6x(x^2 + 16) + 9(x^2 + 16) \\ &= x^4 + 16x^2 - 6x^3 - 96x + 9x^2 + 144 \\ &= x^4 - 6x^3 + 25x^2 - 96x + 144 \end{align*} \][/tex]
So, the polynomial of the least degree with the given properties is:
[tex]\[ f(x) = x^4 - 6x^3 + 25x^2 - 96x + 144 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.