Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Sure, let's convert the given expression \(\left(\frac{17}{19}\right)^{\frac{17}{23}}\) into a radical form.
Step-by-step solution:
1. Identify the base and exponent:
- The expression given is \(\left(\frac{17}{19}\right)^{\frac{17}{23}}\).
- Here, \(\frac{17}{19}\) is the base.
- \(\frac{17}{23}\) is the exponent.
2. Understand the property of exponents related to radicals:
- The expression \(a^{b/c}\) can be written in radical form as \(\sqrt[c]{a^b}\).
- Applying this property to \(\left(\frac{17}{19}\right)^{\frac{17}{23}}\), we can say:
[tex]\[ \left(\frac{17}{19}\right)^{\frac{17}{23}} = \sqrt[23]{\left(\frac{17}{19}\right)^{17}} \][/tex]
3. Calculate the numerical approximation:
- The given base \(\frac{17}{19}\) approximately equals \(0.8947368421052632\).
- Calculating \((0.8947368421052632)^{17}\) results in approximately \(0.15094559624221696\).
4. Express the radical form with the known values:
- Therefore, \(\sqrt[23]{(0.8947368421052632)^{17}}\) represents the expression in radical form.
To summarize, if we start with \(\left(\frac{17}{19}\right)^{\frac{17}{23}}\), we can write it in radical form as:
[tex]\[ \sqrt[23]{\left(\frac{17}{19}\right)^{17}} \quad \text{or} \quad 23\sqrt{0.8947368421052632^{17}} \][/tex]
Step-by-step solution:
1. Identify the base and exponent:
- The expression given is \(\left(\frac{17}{19}\right)^{\frac{17}{23}}\).
- Here, \(\frac{17}{19}\) is the base.
- \(\frac{17}{23}\) is the exponent.
2. Understand the property of exponents related to radicals:
- The expression \(a^{b/c}\) can be written in radical form as \(\sqrt[c]{a^b}\).
- Applying this property to \(\left(\frac{17}{19}\right)^{\frac{17}{23}}\), we can say:
[tex]\[ \left(\frac{17}{19}\right)^{\frac{17}{23}} = \sqrt[23]{\left(\frac{17}{19}\right)^{17}} \][/tex]
3. Calculate the numerical approximation:
- The given base \(\frac{17}{19}\) approximately equals \(0.8947368421052632\).
- Calculating \((0.8947368421052632)^{17}\) results in approximately \(0.15094559624221696\).
4. Express the radical form with the known values:
- Therefore, \(\sqrt[23]{(0.8947368421052632)^{17}}\) represents the expression in radical form.
To summarize, if we start with \(\left(\frac{17}{19}\right)^{\frac{17}{23}}\), we can write it in radical form as:
[tex]\[ \sqrt[23]{\left(\frac{17}{19}\right)^{17}} \quad \text{or} \quad 23\sqrt{0.8947368421052632^{17}} \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.