Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Answer:
Consider the triangle formed by points O, A, and P. Since OA and OP are radii of the circle centered at O, they are congruent. This makes triangle OAP isosceles, and since PA is tangent to the circle at A, angle OAP = 90 degrees.
Using the angle sum property in triangle OAP, we get:
∠OAP + ∠OAB + ∠PAB = 180°
Substituting 90° for ∠OAP and noting that angles at the points of tangency (like ∠PAB) are congruent, we get:
90° + ∠OAB + ∠PAB = 180°
Since we are given that ∠APB = 30°, we can replace ∠PAB with 30° in the equation.
90° + ∠OAB + 30° = 180°
Combining like terms, we get:
∠OAB + 120° = 180°
Subtracting 120° from both sides isolates ∠OAB:
∠OAB = 180° - 120°
Therefore, ∠OAB = 60°.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.