Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's find the vertex of the parabola given by the quadratic equation \( y = x^2 + 2x - 3 \).
For a quadratic equation of the form \( y = ax^2 + bx + c \), the vertex can be found using the vertex formula. The coordinates of the vertex (h, k) are given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
[tex]\[ y = a(x)^2 + b(x) + c \][/tex]
In this equation, the coefficients are:
[tex]\[ a = 1 \][/tex]
[tex]\[ b = 2 \][/tex]
[tex]\[ c = -3 \][/tex]
1. Calculate the x-coordinate of the vertex (h):
[tex]\[ h = -\frac{b}{2a} \][/tex]
[tex]\[ h = -\frac{2}{2(1)} \][/tex]
[tex]\[ h = -\frac{2}{2} \][/tex]
[tex]\[ h = -1.0 \][/tex]
So, the x-coordinate of the vertex is \( x = -1.0 \).
2. Now, substitute \( x = -1.0 \) back into the original equation to find the y-coordinate (k):
[tex]\[ k = a(h)^2 + b(h) + c \][/tex]
[tex]\[ k = 1(-1.0)^2 + 2(-1.0) - 3 \][/tex]
[tex]\[ k = 1(1) + 2(-1) - 3 \][/tex]
[tex]\[ k = 1 - 2 - 3 \][/tex]
[tex]\[ k = -4.0 \][/tex]
Therefore, the y-coordinate of the vertex is \( y = -4.0 \).
So, the vertex of the parabola described by the equation [tex]\( y = x^2 + 2x - 3 \)[/tex] is [tex]\((-1.0, -4.0)\)[/tex].
For a quadratic equation of the form \( y = ax^2 + bx + c \), the vertex can be found using the vertex formula. The coordinates of the vertex (h, k) are given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
[tex]\[ y = a(x)^2 + b(x) + c \][/tex]
In this equation, the coefficients are:
[tex]\[ a = 1 \][/tex]
[tex]\[ b = 2 \][/tex]
[tex]\[ c = -3 \][/tex]
1. Calculate the x-coordinate of the vertex (h):
[tex]\[ h = -\frac{b}{2a} \][/tex]
[tex]\[ h = -\frac{2}{2(1)} \][/tex]
[tex]\[ h = -\frac{2}{2} \][/tex]
[tex]\[ h = -1.0 \][/tex]
So, the x-coordinate of the vertex is \( x = -1.0 \).
2. Now, substitute \( x = -1.0 \) back into the original equation to find the y-coordinate (k):
[tex]\[ k = a(h)^2 + b(h) + c \][/tex]
[tex]\[ k = 1(-1.0)^2 + 2(-1.0) - 3 \][/tex]
[tex]\[ k = 1(1) + 2(-1) - 3 \][/tex]
[tex]\[ k = 1 - 2 - 3 \][/tex]
[tex]\[ k = -4.0 \][/tex]
Therefore, the y-coordinate of the vertex is \( y = -4.0 \).
So, the vertex of the parabola described by the equation [tex]\( y = x^2 + 2x - 3 \)[/tex] is [tex]\((-1.0, -4.0)\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.