At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A system of equations is shown:

[tex]\[
\begin{array}{l}
2x = 5y + 4 \\
3x - 2y = -16
\end{array}
\][/tex]

What is the solution to this system of equations?

A. \((-8, -4)\)
B. \((8, 4)\)
C. \((-4, -8)\)
D. [tex]\((4, 8)\)[/tex]


Sagot :

To solve the given system of equations, we need to find the values of \( x \) and \( y \) that satisfy both equations simultaneously. The system of equations is:
[tex]\[ \begin{array}{r} 2x = 5y + 4 \\ 3x - 2y = -16 \end{array} \][/tex]

Let's follow a step-by-step process to solve this system.

### Step 1: Express one variable in terms of the other from the first equation.

From the first equation:
[tex]\[ 2x = 5y + 4 \][/tex]

We can solve for \(x\):
[tex]\[ x = \frac{5y + 4}{2} \][/tex]

### Step 2: Substitute this expression into the second equation.

Substitute \(x = \frac{5y + 4}{2}\) into the second equation, \(3x - 2y = -16\):
[tex]\[ 3 \left( \frac{5y + 4}{2} \right) - 2y = -16 \][/tex]

### Step 3: Simplify the equation.

Multiply through by 2 to clear the fraction:
[tex]\[ 3(5y + 4) - 4y = -32 \][/tex]
[tex]\[ 15y + 12 - 4y = -32 \][/tex]
[tex]\[ 11y + 12 = -32 \][/tex]

### Step 4: Solve for \(y\).

Isolate \(y\) by subtracting 12 from both sides:
[tex]\[ 11y = -44 \][/tex]

Divide by 11:
[tex]\[ y = -4 \][/tex]

### Step 5: Substitute \(y = -4\) back into the expression for \(x\).

Now we use the expression \(x = \frac{5y + 4}{2}\):
[tex]\[ x = \frac{5(-4) + 4}{2} \][/tex]
[tex]\[ x = \frac{-20 + 4}{2} \][/tex]
[tex]\[ x = \frac{-16}{2} \][/tex]
[tex]\[ x = -8 \][/tex]

### Final Solution:

The solution to the system of equations is \(x = -8\) and \(y = -4\).

Therefore, the correct answer choice is:
[tex]\[ (-8, -4) \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.