Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the given system of equations, we need to find the values of \( x \) and \( y \) that satisfy both equations simultaneously. The system of equations is:
[tex]\[ \begin{array}{r} 2x = 5y + 4 \\ 3x - 2y = -16 \end{array} \][/tex]
Let's follow a step-by-step process to solve this system.
### Step 1: Express one variable in terms of the other from the first equation.
From the first equation:
[tex]\[ 2x = 5y + 4 \][/tex]
We can solve for \(x\):
[tex]\[ x = \frac{5y + 4}{2} \][/tex]
### Step 2: Substitute this expression into the second equation.
Substitute \(x = \frac{5y + 4}{2}\) into the second equation, \(3x - 2y = -16\):
[tex]\[ 3 \left( \frac{5y + 4}{2} \right) - 2y = -16 \][/tex]
### Step 3: Simplify the equation.
Multiply through by 2 to clear the fraction:
[tex]\[ 3(5y + 4) - 4y = -32 \][/tex]
[tex]\[ 15y + 12 - 4y = -32 \][/tex]
[tex]\[ 11y + 12 = -32 \][/tex]
### Step 4: Solve for \(y\).
Isolate \(y\) by subtracting 12 from both sides:
[tex]\[ 11y = -44 \][/tex]
Divide by 11:
[tex]\[ y = -4 \][/tex]
### Step 5: Substitute \(y = -4\) back into the expression for \(x\).
Now we use the expression \(x = \frac{5y + 4}{2}\):
[tex]\[ x = \frac{5(-4) + 4}{2} \][/tex]
[tex]\[ x = \frac{-20 + 4}{2} \][/tex]
[tex]\[ x = \frac{-16}{2} \][/tex]
[tex]\[ x = -8 \][/tex]
### Final Solution:
The solution to the system of equations is \(x = -8\) and \(y = -4\).
Therefore, the correct answer choice is:
[tex]\[ (-8, -4) \][/tex]
[tex]\[ \begin{array}{r} 2x = 5y + 4 \\ 3x - 2y = -16 \end{array} \][/tex]
Let's follow a step-by-step process to solve this system.
### Step 1: Express one variable in terms of the other from the first equation.
From the first equation:
[tex]\[ 2x = 5y + 4 \][/tex]
We can solve for \(x\):
[tex]\[ x = \frac{5y + 4}{2} \][/tex]
### Step 2: Substitute this expression into the second equation.
Substitute \(x = \frac{5y + 4}{2}\) into the second equation, \(3x - 2y = -16\):
[tex]\[ 3 \left( \frac{5y + 4}{2} \right) - 2y = -16 \][/tex]
### Step 3: Simplify the equation.
Multiply through by 2 to clear the fraction:
[tex]\[ 3(5y + 4) - 4y = -32 \][/tex]
[tex]\[ 15y + 12 - 4y = -32 \][/tex]
[tex]\[ 11y + 12 = -32 \][/tex]
### Step 4: Solve for \(y\).
Isolate \(y\) by subtracting 12 from both sides:
[tex]\[ 11y = -44 \][/tex]
Divide by 11:
[tex]\[ y = -4 \][/tex]
### Step 5: Substitute \(y = -4\) back into the expression for \(x\).
Now we use the expression \(x = \frac{5y + 4}{2}\):
[tex]\[ x = \frac{5(-4) + 4}{2} \][/tex]
[tex]\[ x = \frac{-20 + 4}{2} \][/tex]
[tex]\[ x = \frac{-16}{2} \][/tex]
[tex]\[ x = -8 \][/tex]
### Final Solution:
The solution to the system of equations is \(x = -8\) and \(y = -4\).
Therefore, the correct answer choice is:
[tex]\[ (-8, -4) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.