At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Answer:
Step-by-step explanation:
To write the equation for a cubic polynomial function whose graph has zeroes at 2, 3, and 5, we start by using the fact that these roots imply the polynomial can be written in the form:
P(x) = a(x - 2)(x - 3)(x - 5)
Here, a is a non-zero constant that can be any real number. If we assume a = 1 for simplicity, the polynomial becomes:
P(x) = (x - 2)(x - 3)(x - 5)
Now, let’s expand this polynomial:
First, expand \(x - 2)(x - 3):
(x - 2)(x - 3) = x^2 - 3x - 2x + 6 = x^2 - 5x + 6
Next, multiply this result by (x - 5):
(x^2 - 5x + 6)(x - 5)
= x^3 - 5x^2 + 6x - 5x^2 + 25x - 30
= x^3 - 10x^2 + 31x - 30
Thus, the cubic polynomial with zeroes at 2, 3, and 5 is:
P(x) = x^3 - 10x^2 + 31x - 30
Regarding multiplicity, none of the roots 2, 3, or 5 have a multiplicity greater than 1 in the current polynomial because each factor (x - 2), (x - 3), and (x - 5) appears exactly once.
If any root were to have a multiplicity greater than 1, the polynomial would no longer be cubic; instead, it would have a higher degree. For example, if the root (2) had a multiplicity of 2, the polynomial would be:
P(x) = a(x - 2)^2(x - 3)(x - 5)
This polynomial is quartic (degree 4), not cubic.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.