Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

The following table shows the distribution of masses of 100 blood donors:

[tex]\[
\begin{array}{|c|c|}
\hline
\text{Mass (kg)} & \text{Number of Donors} \\
\hline
60-62 & 5 \\
62-65 & 18 \\
69-71 & 43 \\
72-76 & 8 \\
\hline
\end{array}
\][/tex]

Using an assumed mean of [tex]$67 \, \text{kg}$[/tex], calculate the mean, standard deviation, and coefficient of variation of the distribution.


Sagot :

Certainly! Let's go through the step-by-step solution to calculate the mean, standard deviation, and coefficient of variation for the given data:

### Step 1: Data Interpretation

We are given the class intervals and the corresponding number of donors (frequencies). The midpoint values (masses) for each class interval are calculated as follows:

- Class Interval: \(60-62\):
- Midpoint: \(\frac{60 + 62}{2} = 61\)
- Class Interval: \(62-65\):
- Midpoint: \(\frac{62 + 65}{2} = 63.5\)
- Class Interval: \(69-71\):
- Midpoint: \(\frac{69 + 71}{2} = 70\)
- Class Interval: \(72-76\):
- Midpoint: \(\frac{72 + 76}{2} = 74\)

### Step 2: Given Data Summary
- Masses (midpoints): \([61, 63.5, 70, 74]\)
- Frequencies: \([5, 18, 43, 8]\)
- Assumed Mean (\(A\)): \(67 \, \text{kg}\)

### Step 3: Mean Calculation

1. Calculate the Deviations:
[tex]\[ d_i = x_i - A \][/tex]
Here, \(x_i\) are the midpoints, and \(A\) is the assumed mean.
- For \(61 - 67 = -6\)
- For \(63.5 - 67 = -3.5\)
- For \(70 - 67 = 3\)
- For \(74 - 67 = 7\)

Deviations: \([-6, -3.5, 3, 7]\)

2. Weighted Deviations:
[tex]\[ f_id_i = f_i \times d_i \][/tex]
Multiply each deviation by its corresponding frequency.
- \(5 \times -6 = -30\)
- \(18 \times -3.5 = -63\)
- \(43 \times 3 = 129\)
- \(8 \times 7 = 56\)

Weighted Deviations: \([-30, -63, 129, 56]\)

3. Sum of Weighted Deviations:
[tex]\[ \sum (f_id_i) = -30 - 63 + 129 + 56 = 92 \][/tex]

4. Sum of Frequencies:
[tex]\[ \sum f_i = 5 + 18 + 43 + 8 = 74 \][/tex]

5. Apply the Formula for Mean:
[tex]\[ \bar{x} = A + \frac{\sum (f_id_i)}{\sum f_i} = 67 + \frac{92}{74} = 68.24 \, \text{kg \, (approx)} \][/tex]

### Step 4: Standard Deviation Calculation

1. Square of the Deviations:
[tex]\[ d_i^2 \][/tex]
- \((-6)^2 = 36\)
- \((-3.5)^2 = 12.25\)
- \(3^2 = 9\)
- \(7^2 = 49\)

Squared Deviations: \([36, 12.25, 9, 49]\)

2. Weighted Squared Deviations:
[tex]\[ f_i \times d_i^2 \][/tex]
- \(5 \times 36 = 180\)
- \(18 \times 12.25 = 220.5\)
- \(43 \times 9 = 387\)
- \(8 \times 49 = 392\)

Weighted Squared Deviations: \([180, 220.5, 387, 392]\)

3. Sum of Weighted Squared Deviations:
[tex]\[ \sum(f_i d_i^2) = 180 + 220.5 + 387 + 392 = 1179.5 \][/tex]

4. Variance:
[tex]\[ \sigma^2 = \frac{\sum(f_i d_i^2)}{\sum f_i} = \frac{1179.5}{74} = 15.937 \, (\text{approx}) \][/tex]

5. Standard Deviation:
[tex]\[ \sigma = \sqrt{15.937} = 3.99 \, \text{kg \, (approx)} \][/tex]

### Step 5: Coefficient of Variation

1. Coefficient of Variation:
[tex]\[ \text{CV} = \left(\frac{\sigma}{\bar{x}}\right) \times 100 \][/tex]
[tex]\[ \text{CV} = \left(\frac{3.99}{68.24}\right) \times 100 = 5.85\% \, (\text{approx}) \][/tex]

### Final Summarized Results

- Mean (\(\bar{x}\)): \(68.24 \, \text{kg\ (approx)}\)
- Standard Deviation (\(\sigma\)): \(3.99 \, \text{kg\ (approx)}\)
- Coefficient of Variation (CV): \(5.85\% \, \text{(approx)}\)

Thus, the mean is approximately [tex]\(68.24 \, \text{kg}\)[/tex], the standard deviation is approximately [tex]\(3.99 \, \text{kg}\)[/tex], and the coefficient of variation is approximately [tex]\(5.85\%\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.