Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the equation \(\cos x = -\sin^2 x - 1\) in the interval \([0, 2\pi)\), let's work through the equation step by step.
1. Rewrite the Equation:
[tex]\[ \cos x = -\sin^2 x - 1 \][/tex]
2. Use Pythagorean Identity:
Recall that \(\sin^2 x + \cos^2 x = 1\). Therefore, we can express \(\sin^2 x\) in terms of \(\cos x\):
[tex]\[ \sin^2 x = 1 - \cos^2 x \][/tex]
Substitute \(\sin^2 x\) into the equation:
[tex]\[ \cos x = -(1 - \cos^2 x) - 1 \][/tex]
3. Simplify the Equation:
Simplify the right-hand side:
[tex]\[ \cos x = -1 + \cos^2 x - 1 \][/tex]
[tex]\[ \cos x = \cos^2 x - 2 \][/tex]
4. Rearrange the Equation:
Move all terms to one side to form a quadratic equation:
[tex]\[ \cos^2 x - \cos x - 2 = 0 \][/tex]
5. Solve the Quadratic Equation:
Let \(u = \cos x\). The equation becomes:
[tex]\[ u^2 - u - 2 = 0 \][/tex]
Solve this quadratic equation using the quadratic formula \(u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 1\), \(b = -1\), and \(c = -2\):
[tex]\[ u = \frac{1 \pm \sqrt{1 + 8}}{2} \][/tex]
[tex]\[ u = \frac{1 \pm 3}{2} \][/tex]
Thus, we have two solutions for \(u\):
[tex]\[ u = 2 \quad \text{and} \quad u = -1 \][/tex]
6. Evaluate the Cosine Values:
- \(\cos x = 2\) is not possible because the cosine function ranges between -1 and 1.
- \(\cos x = -1\) is valid.
7. Determine the Associated \(x\) Value:
If \(\cos x = -1\), the angle \(x\) in the interval \([0, 2\pi)\) is:
[tex]\[ x = \pi \][/tex]
8. State the Final Solution:
The solution to the equation \(\cos x = -\sin^2 x - 1\) in the interval \([0, 2\pi)\) is:
[tex]\[ x = \pi \][/tex]
Expressing the solution in terms of \(\pi\):
[tex]\[ x = \pi \][/tex]
1. Rewrite the Equation:
[tex]\[ \cos x = -\sin^2 x - 1 \][/tex]
2. Use Pythagorean Identity:
Recall that \(\sin^2 x + \cos^2 x = 1\). Therefore, we can express \(\sin^2 x\) in terms of \(\cos x\):
[tex]\[ \sin^2 x = 1 - \cos^2 x \][/tex]
Substitute \(\sin^2 x\) into the equation:
[tex]\[ \cos x = -(1 - \cos^2 x) - 1 \][/tex]
3. Simplify the Equation:
Simplify the right-hand side:
[tex]\[ \cos x = -1 + \cos^2 x - 1 \][/tex]
[tex]\[ \cos x = \cos^2 x - 2 \][/tex]
4. Rearrange the Equation:
Move all terms to one side to form a quadratic equation:
[tex]\[ \cos^2 x - \cos x - 2 = 0 \][/tex]
5. Solve the Quadratic Equation:
Let \(u = \cos x\). The equation becomes:
[tex]\[ u^2 - u - 2 = 0 \][/tex]
Solve this quadratic equation using the quadratic formula \(u = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\), where \(a = 1\), \(b = -1\), and \(c = -2\):
[tex]\[ u = \frac{1 \pm \sqrt{1 + 8}}{2} \][/tex]
[tex]\[ u = \frac{1 \pm 3}{2} \][/tex]
Thus, we have two solutions for \(u\):
[tex]\[ u = 2 \quad \text{and} \quad u = -1 \][/tex]
6. Evaluate the Cosine Values:
- \(\cos x = 2\) is not possible because the cosine function ranges between -1 and 1.
- \(\cos x = -1\) is valid.
7. Determine the Associated \(x\) Value:
If \(\cos x = -1\), the angle \(x\) in the interval \([0, 2\pi)\) is:
[tex]\[ x = \pi \][/tex]
8. State the Final Solution:
The solution to the equation \(\cos x = -\sin^2 x - 1\) in the interval \([0, 2\pi)\) is:
[tex]\[ x = \pi \][/tex]
Expressing the solution in terms of \(\pi\):
[tex]\[ x = \pi \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.