Answered

At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

3. Let [tex]$a[tex]$[/tex] be a number with [tex]$[/tex]a \neq 0, -1 < a < 1[tex]$[/tex], and [tex]$[/tex]b[tex]$[/tex] an arbitrary real number. Let [tex]$[/tex]f(x) = a x + b$[/tex]. Moreover, let [tex]f^1(x) = f(x)[/tex], and [tex]f^n(x) = f\left(f^{n-1}(x)\right) \quad (n=2,3,4, \ldots)[/tex]. Fill in the blanks with the answers to the following questions.

1. Express [tex]$f^n(x) \ (n=1,2,3, \ldots)$[/tex] in terms of [tex]a, b, x, n[/tex].

[tex]\square[/tex]

2. Express [tex]$\frac{f^n(x)-f^{n-1}(x)}{a^n} \ (n=2,3,4, \ldots)$[/tex] in terms of [tex]a, b, x, n[/tex].

[tex]\square[/tex]

3. Consider the curve [tex]$y = \frac{f^n(x) - f^{n-1}(x)}{a^n} \ (n=2,3,4, \ldots)[tex]$[/tex] and the line [tex]$[/tex]y = a x + b[tex]$[/tex]. Find the intersection point [tex]Q\left(x_n, y_n\right)$[/tex][/tex] of the curve and the line above, and express [tex]x_{n}[/tex], [tex]y_{n}[/tex] in terms of [tex]a, b, n[/tex].

[tex]x_n = \square[/tex]
[tex]y_n = \square[/tex]

4. Calculate the limit [tex]$\lim_{n \rightarrow \infty} f^n(x)$[/tex], and express it in terms of [tex]a, b, x[/tex].

[tex]\square[/tex]


Sagot :

Let's solve each part of the question step-by-step.

### Part (1)

We want to express \( f^n(x) \) in terms of \( a, b, x, n \).

Given the function \( f(x) = ax + b \), we can construct the first few iterations of \( f \):

- For \( n = 1 \), \( f^1(x) = f(x) = ax + b \).
- For \( n = 2 \), \( f^2(x) = f(f(x)) = f(ax + b) = a(ax + b) + b = a^2x + ab + b \).
- For \( n = 3 \), \( f^3(x) = f(f^2(x)) = f(a^2x + ab + b) = a(a^2x + ab + b) + b = a^3x + a^2b + ab + b \).

To find a general form, we notice a pattern. Each iteration adds another factor of \( a \) to the term involving \( x \) and accumulates the constants \( b \) influenced by the power of \( a \):

[tex]\[ f^n(x) = a^n x + b(1 + a + a^2 + \cdots + a^{n-1}) \][/tex]

The sum \( 1 + a + a^2 + \cdots + a^{n-1} \) is a geometric series with sum given by \(\frac{1-a^n}{1-a}\) (since \( |a| < 1 \)):

[tex]\[ f^n(x) = a^n x + b \cdot \frac{1-a^n}{1-a} \][/tex]

So,

[tex]\[ \boxed{f^n(x) = a^n x + \frac{b(1-a^n)}{1-a}} \][/tex]

### Part (2)

We want to express \(\frac{f^n(x) - f^{n-1}(x)}{a^n}\) in terms of \( a, b, x, n \).

From part (1), we have:
[tex]\[ f^n(x) = a^n x + \frac{b(1-a^n)}{1-a} \][/tex]

[tex]\[ f^{n-1}(x) = a^{n-1} x + \frac{b(1-a^{n-1})}{1-a} \][/tex]

The difference is:
[tex]\[ f^n(x) - f^{n-1}(x) = \left( a^n x + \frac{b(1-a^n)}{1-a} \right) - \left( a^{n-1} x + \frac{b(1-a^{n-1})}{1-a} \right) \][/tex]
[tex]\[ = a^n x - a^{n-1} x + b \left( \frac{1-a^n}{1-a} - \frac{1-a^{n-1}}{1-a} \right) \][/tex]
[tex]\[ = a^{n-1}(ax - x) + b \left( \frac{a^{n-1}(a-1)}{1-a} \right) \][/tex]
[tex]\[ = a^{n-1}x(a - 1) + b \left( -a^{n-1} \right) \][/tex]
[tex]\[ = a^{n-1}\cdot (a-1)x - a^{n-1}b \][/tex]

Dividing by \( a^n \):
[tex]\[ \frac{f^n(x) - f^{n-1}(x)}{a^n} = \frac{a^{n-1}(ax - x) - b a^{n-1}}{a^n} \][/tex]
[tex]\[ = \frac{a^{n-1}(a - 1)x - b a^{n-1}}{a^n} \][/tex]
[tex]\[ = \frac{(a - 1)x - b}{a} \][/tex]

So,

[tex]\[ \boxed{\frac{f^n(x) - f^{n-1}(x)}{a^n} = \frac{(a - 1)x - b}{a}} \][/tex]

### Part (3)

Consider the curve \( y = \frac{f^n(x) - f^{n-1}(x)}{a^n} \) and the line \( y = ax + b \). We need to find their intersection point \( Q(x_n, y_n) \).

From part (2), the curve is \( y = \frac{(a-1)x - b}{a} \).

Setting these equal:
[tex]\[ ax + b = \frac{(a-1)x - b}{a} \][/tex]

Multiply both sides by \( a \):
[tex]\[ a^2x + ab = (a-1)x - b \][/tex]

Collecting like terms:
[tex]\[ a^2 x - (a-1)x = - b - ab \][/tex]
[tex]\[ (a^2 - a + 1)x = - b(1 + a) \][/tex]
[tex]\[ x_n = \frac{- b(1 + a)}{a^2 - a + 1} \][/tex]

Substitute \( x_n \) into \( y = ax + b \):

[tex]\[ y_n = a\left( \frac{- b(1+a)}{a^2 - a + 1} \right) + b \][/tex]

Simplifying \( y_n \):

[tex]\[ y_n = \frac{- ab(1 + a)}{a^2 - a + 1} + b \][/tex]
[tex]\[ = \frac{- ab(1 + a) + b(a^2 - a + 1)}{a^2 - a + 1} \][/tex]
[tex]\[ = \frac{b(a^2 - ab - ab - a + b)}{a^2 - a + 1} \][/tex]
[tex]\[ y_n = \frac{b(a^2 - 2ab - a + 1)}{a^2 - a + 1} \][/tex]

Thus,

[tex]\[ \boxed{x_n = \frac{- b(1 + a)}{a^2 - a + 1}} \][/tex]
[tex]\[ \boxed{y_n = \frac{b(a^2 - 2ab - a + 1)}{a^2 - a + 1}} \][/tex]

### Part (4)

Calculate the limit \(\lim_{n \rightarrow \infty} f^n(x)\).

From part (1), \( f^n(x) = a^n x + \frac{b(1-a^n)}{1-a} \).

As \( n \rightarrow \infty \), since \( -1 < a < 1 \), \( a^n \rightarrow 0 \):
[tex]\[ \lim_{n \to \infty} f^n(x) = 0 \cdot x + \frac{b(1-0)}{1-a} \][/tex]
[tex]\[ = \frac{b}{1-a} \][/tex]

Thus,

[tex]\[ \boxed{\lim_{n \rightarrow \infty} f^n(x) = \frac{b}{1-a}} \][/tex]