Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine whether the given function \( y = 6^x \) is an exponential function, we should first understand the defining characteristics of an exponential function.
An exponential function is a mathematical expression in the form:
[tex]\[ y = a^x \][/tex]
where:
- \( a \) is a positive constant (base),
- \( x \) is the exponent and can be any real number,
- \( y \) is the output of the function.
Key features of exponential functions include:
1. The variable \( x \) is located in the exponent.
2. The base \( a \) is a positive constant.
Consider our given function:
[tex]\[ y = 6^x \][/tex]
Step-by-Step Verification:
1. Check the Form:
- The given function is expressed as \( y = 6^x \), which matches the general form \( y = a^x \).
2. Identify the Base:
- Here, the base \( a \) is 6, which is a positive constant (base \( a > 0 \)).
3. Check the Exponent:
- The variable \( x \) is indeed in the exponent.
Given these observations, the function \( y = 6^x \) fulfills the criteria for being an exponential function:
- The format \( y = a^x \) is met with \( a = 6 \) and \( x \) in the exponent.
- The base \( a = 6 \) is a positive constant.
Therefore, the function \( y = 6^x \) is an exponential function.
In summary, the correct answer is:
[tex]\[ \text{exponential} \][/tex]
An exponential function is a mathematical expression in the form:
[tex]\[ y = a^x \][/tex]
where:
- \( a \) is a positive constant (base),
- \( x \) is the exponent and can be any real number,
- \( y \) is the output of the function.
Key features of exponential functions include:
1. The variable \( x \) is located in the exponent.
2. The base \( a \) is a positive constant.
Consider our given function:
[tex]\[ y = 6^x \][/tex]
Step-by-Step Verification:
1. Check the Form:
- The given function is expressed as \( y = 6^x \), which matches the general form \( y = a^x \).
2. Identify the Base:
- Here, the base \( a \) is 6, which is a positive constant (base \( a > 0 \)).
3. Check the Exponent:
- The variable \( x \) is indeed in the exponent.
Given these observations, the function \( y = 6^x \) fulfills the criteria for being an exponential function:
- The format \( y = a^x \) is met with \( a = 6 \) and \( x \) in the exponent.
- The base \( a = 6 \) is a positive constant.
Therefore, the function \( y = 6^x \) is an exponential function.
In summary, the correct answer is:
[tex]\[ \text{exponential} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.