Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine whether the given function \( y = 6^x \) is an exponential function, we should first understand the defining characteristics of an exponential function.
An exponential function is a mathematical expression in the form:
[tex]\[ y = a^x \][/tex]
where:
- \( a \) is a positive constant (base),
- \( x \) is the exponent and can be any real number,
- \( y \) is the output of the function.
Key features of exponential functions include:
1. The variable \( x \) is located in the exponent.
2. The base \( a \) is a positive constant.
Consider our given function:
[tex]\[ y = 6^x \][/tex]
Step-by-Step Verification:
1. Check the Form:
- The given function is expressed as \( y = 6^x \), which matches the general form \( y = a^x \).
2. Identify the Base:
- Here, the base \( a \) is 6, which is a positive constant (base \( a > 0 \)).
3. Check the Exponent:
- The variable \( x \) is indeed in the exponent.
Given these observations, the function \( y = 6^x \) fulfills the criteria for being an exponential function:
- The format \( y = a^x \) is met with \( a = 6 \) and \( x \) in the exponent.
- The base \( a = 6 \) is a positive constant.
Therefore, the function \( y = 6^x \) is an exponential function.
In summary, the correct answer is:
[tex]\[ \text{exponential} \][/tex]
An exponential function is a mathematical expression in the form:
[tex]\[ y = a^x \][/tex]
where:
- \( a \) is a positive constant (base),
- \( x \) is the exponent and can be any real number,
- \( y \) is the output of the function.
Key features of exponential functions include:
1. The variable \( x \) is located in the exponent.
2. The base \( a \) is a positive constant.
Consider our given function:
[tex]\[ y = 6^x \][/tex]
Step-by-Step Verification:
1. Check the Form:
- The given function is expressed as \( y = 6^x \), which matches the general form \( y = a^x \).
2. Identify the Base:
- Here, the base \( a \) is 6, which is a positive constant (base \( a > 0 \)).
3. Check the Exponent:
- The variable \( x \) is indeed in the exponent.
Given these observations, the function \( y = 6^x \) fulfills the criteria for being an exponential function:
- The format \( y = a^x \) is met with \( a = 6 \) and \( x \) in the exponent.
- The base \( a = 6 \) is a positive constant.
Therefore, the function \( y = 6^x \) is an exponential function.
In summary, the correct answer is:
[tex]\[ \text{exponential} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.