At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

What is the range of the function [tex]g(x) = -3 \sec(2x + 4) - 1[/tex]?

A. [tex](-\infty, -4] \cup [0, \infty)[/tex]
B. [tex](-\infty, -5] \cup [1, \infty)[/tex]
C. [tex](-\infty, -4] \cup [2, \infty)[/tex]
D. [tex](-\infty, -2] \cup [0, \infty)[/tex]

Sagot :

To determine the range of the function \( g(x) = -3 \sec(2x + 4) - 1 \), we need to take a step-by-step approach:

1. Understand the basic secant function properties:
The secant function, \(\sec(y)\), is defined as \( \sec(y) = \frac{1}{\cos(y)} \). Its range is \( (-\infty, -1] \cup [1, \infty) \).

2. Apply the transformations to \( \sec(y) \) introduced by \( 2x + 4 \) inside the secant function in \( g(x) \):
The expression \( 2x + 4 \) represents a horizontal compression by factor of \(1/2\) and a horizontal shift by \(-4/2\). However, this transformation does not affect the range of \(\sec(y)\).

3. Analyze the transformation applied outside the secant in \( g(x) \) function:
The function \( g(x) = -3 \sec(2x + 4) - 1 \) includes a multiplication by \(-3\) and a vertical shift by \(-1\).

4. Determine the effect on the range:

- Original range of \(\sec(y)\): \((- \infty, -1] \cup [1, \infty)\)
- Multiplication by \(-3\): \(\sec(y) \to -3 \sec(y)\)

This inverts and stretches the range:
[tex]\[ (- \infty, -1] \cup [1, \infty) \xrightarrow{-3 \cdot (\cdot)} (- \infty, -3] \cup [3, \infty) \][/tex]

- Vertical shift by \(-1\): \(-3 \sec(y) \to -3 \sec(y) - 1\)

This translates the range downward by 1 unit:
[tex]\[ (- \infty, -3] - 1 = (- \infty, -4] \][/tex]
[tex]\[ [3, \infty) - 1 = [2, \infty) \][/tex]

5. Combine the intervals:
After applying the transformations, the resulting range for \( g(x) \) is:
[tex]\[ (- \infty, -4] \cup [2, \infty) \][/tex]

Hence, the range of the function \( g(x) = -3 \sec(2x + 4) - 1 \) is:
[tex]\[ (-\infty,-4] \cup[2, \infty) \][/tex]
This matches the third option given.

Final Answer:
[tex]\[ (-\infty,-4] \cup[2, \infty) \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.