Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the equation for a cosecant function that has vertical asymptotes at \( x = \frac{\pi}{3} + \frac{\pi}{3} n \), where \( n \) is an integer, follow these steps:
1. Identify the general form of the vertical asymptotes for the cosecant function:
- The general form for the vertical asymptotes of the cosecant function \( \csc(kx) \) is given by \( x = \frac{n\pi}{k} \), where \( n \) is an integer.
2. Compare the given vertical asymptotes to the general form:
- For the given asymptotes, \( x = \frac{\pi}{3} + \frac{\pi}{3} n \).
- Rewrite this as \( x = \frac{\pi}{3}(1 + n) \). Here, \( 1 + n \) is also an integer, so this matches the form \( x = \frac{m\pi}{3} \) for integer \( m \).
3. Determine the value of \( k \) that fits the general form:
- Comparing \( x = \frac{m\pi}{3} \) with \( x = \frac{n\pi}{k} \), it is clear that \( k \) must equal 3 for the vertical asymptotes to match.
4. Match the value of \( k \) to one of the given function forms:
- Check the given options:
1. \( h(x) = 4 \csc x \): This would have vertical asymptotes at \( x = n\pi \), which does not match \( x = \frac{\pi}{3} + \frac{\pi}{3} n \).
2. \( g(x) = 3 \csc 2x \): This would have vertical asymptotes at \( x = \frac{n\pi}{2} \), which does not match.
3. \( f(x) = 3 \csc 4x \): This would have vertical asymptotes at \( x = \frac{n\pi}{4} \), which does not match.
4. \( j(x) = 4 \csc 3x \): This would have vertical asymptotes at \( x = \frac{n\pi}{3} \), which agrees with the given form.
Thus, the correct equation with vertical asymptotes at \( x = \frac{\pi}{3} + \frac{\pi}{3} n \) is:
[tex]\[ j(x) = 4 \csc 3x \][/tex]
1. Identify the general form of the vertical asymptotes for the cosecant function:
- The general form for the vertical asymptotes of the cosecant function \( \csc(kx) \) is given by \( x = \frac{n\pi}{k} \), where \( n \) is an integer.
2. Compare the given vertical asymptotes to the general form:
- For the given asymptotes, \( x = \frac{\pi}{3} + \frac{\pi}{3} n \).
- Rewrite this as \( x = \frac{\pi}{3}(1 + n) \). Here, \( 1 + n \) is also an integer, so this matches the form \( x = \frac{m\pi}{3} \) for integer \( m \).
3. Determine the value of \( k \) that fits the general form:
- Comparing \( x = \frac{m\pi}{3} \) with \( x = \frac{n\pi}{k} \), it is clear that \( k \) must equal 3 for the vertical asymptotes to match.
4. Match the value of \( k \) to one of the given function forms:
- Check the given options:
1. \( h(x) = 4 \csc x \): This would have vertical asymptotes at \( x = n\pi \), which does not match \( x = \frac{\pi}{3} + \frac{\pi}{3} n \).
2. \( g(x) = 3 \csc 2x \): This would have vertical asymptotes at \( x = \frac{n\pi}{2} \), which does not match.
3. \( f(x) = 3 \csc 4x \): This would have vertical asymptotes at \( x = \frac{n\pi}{4} \), which does not match.
4. \( j(x) = 4 \csc 3x \): This would have vertical asymptotes at \( x = \frac{n\pi}{3} \), which agrees with the given form.
Thus, the correct equation with vertical asymptotes at \( x = \frac{\pi}{3} + \frac{\pi}{3} n \) is:
[tex]\[ j(x) = 4 \csc 3x \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.