Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the equation for a cosecant function that has vertical asymptotes at \( x = \frac{\pi}{3} + \frac{\pi}{3} n \), where \( n \) is an integer, follow these steps:
1. Identify the general form of the vertical asymptotes for the cosecant function:
- The general form for the vertical asymptotes of the cosecant function \( \csc(kx) \) is given by \( x = \frac{n\pi}{k} \), where \( n \) is an integer.
2. Compare the given vertical asymptotes to the general form:
- For the given asymptotes, \( x = \frac{\pi}{3} + \frac{\pi}{3} n \).
- Rewrite this as \( x = \frac{\pi}{3}(1 + n) \). Here, \( 1 + n \) is also an integer, so this matches the form \( x = \frac{m\pi}{3} \) for integer \( m \).
3. Determine the value of \( k \) that fits the general form:
- Comparing \( x = \frac{m\pi}{3} \) with \( x = \frac{n\pi}{k} \), it is clear that \( k \) must equal 3 for the vertical asymptotes to match.
4. Match the value of \( k \) to one of the given function forms:
- Check the given options:
1. \( h(x) = 4 \csc x \): This would have vertical asymptotes at \( x = n\pi \), which does not match \( x = \frac{\pi}{3} + \frac{\pi}{3} n \).
2. \( g(x) = 3 \csc 2x \): This would have vertical asymptotes at \( x = \frac{n\pi}{2} \), which does not match.
3. \( f(x) = 3 \csc 4x \): This would have vertical asymptotes at \( x = \frac{n\pi}{4} \), which does not match.
4. \( j(x) = 4 \csc 3x \): This would have vertical asymptotes at \( x = \frac{n\pi}{3} \), which agrees with the given form.
Thus, the correct equation with vertical asymptotes at \( x = \frac{\pi}{3} + \frac{\pi}{3} n \) is:
[tex]\[ j(x) = 4 \csc 3x \][/tex]
1. Identify the general form of the vertical asymptotes for the cosecant function:
- The general form for the vertical asymptotes of the cosecant function \( \csc(kx) \) is given by \( x = \frac{n\pi}{k} \), where \( n \) is an integer.
2. Compare the given vertical asymptotes to the general form:
- For the given asymptotes, \( x = \frac{\pi}{3} + \frac{\pi}{3} n \).
- Rewrite this as \( x = \frac{\pi}{3}(1 + n) \). Here, \( 1 + n \) is also an integer, so this matches the form \( x = \frac{m\pi}{3} \) for integer \( m \).
3. Determine the value of \( k \) that fits the general form:
- Comparing \( x = \frac{m\pi}{3} \) with \( x = \frac{n\pi}{k} \), it is clear that \( k \) must equal 3 for the vertical asymptotes to match.
4. Match the value of \( k \) to one of the given function forms:
- Check the given options:
1. \( h(x) = 4 \csc x \): This would have vertical asymptotes at \( x = n\pi \), which does not match \( x = \frac{\pi}{3} + \frac{\pi}{3} n \).
2. \( g(x) = 3 \csc 2x \): This would have vertical asymptotes at \( x = \frac{n\pi}{2} \), which does not match.
3. \( f(x) = 3 \csc 4x \): This would have vertical asymptotes at \( x = \frac{n\pi}{4} \), which does not match.
4. \( j(x) = 4 \csc 3x \): This would have vertical asymptotes at \( x = \frac{n\pi}{3} \), which agrees with the given form.
Thus, the correct equation with vertical asymptotes at \( x = \frac{\pi}{3} + \frac{\pi}{3} n \) is:
[tex]\[ j(x) = 4 \csc 3x \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.