Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

(05.08 MC)

What is the equation for a cosecant function with vertical asymptotes found at [tex]$x=\frac{\pi}{3}+\frac{\pi}{3} n[tex]$[/tex], such that [tex]$[/tex]n$[/tex] is an integer?

A. [tex]h(x)=4 \csc x[/tex]
B. [tex]g(x)=3 \csc 2x[/tex]
C. [tex]f(x)=3 \csc 4x[/tex]
D. [tex]j(x)=4 \csc 3x[/tex]

Sagot :

To determine the equation for a cosecant function that has vertical asymptotes at \( x = \frac{\pi}{3} + \frac{\pi}{3} n \), where \( n \) is an integer, follow these steps:

1. Identify the general form of the vertical asymptotes for the cosecant function:
- The general form for the vertical asymptotes of the cosecant function \( \csc(kx) \) is given by \( x = \frac{n\pi}{k} \), where \( n \) is an integer.

2. Compare the given vertical asymptotes to the general form:
- For the given asymptotes, \( x = \frac{\pi}{3} + \frac{\pi}{3} n \).
- Rewrite this as \( x = \frac{\pi}{3}(1 + n) \). Here, \( 1 + n \) is also an integer, so this matches the form \( x = \frac{m\pi}{3} \) for integer \( m \).

3. Determine the value of \( k \) that fits the general form:
- Comparing \( x = \frac{m\pi}{3} \) with \( x = \frac{n\pi}{k} \), it is clear that \( k \) must equal 3 for the vertical asymptotes to match.

4. Match the value of \( k \) to one of the given function forms:
- Check the given options:
1. \( h(x) = 4 \csc x \): This would have vertical asymptotes at \( x = n\pi \), which does not match \( x = \frac{\pi}{3} + \frac{\pi}{3} n \).
2. \( g(x) = 3 \csc 2x \): This would have vertical asymptotes at \( x = \frac{n\pi}{2} \), which does not match.
3. \( f(x) = 3 \csc 4x \): This would have vertical asymptotes at \( x = \frac{n\pi}{4} \), which does not match.
4. \( j(x) = 4 \csc 3x \): This would have vertical asymptotes at \( x = \frac{n\pi}{3} \), which agrees with the given form.

Thus, the correct equation with vertical asymptotes at \( x = \frac{\pi}{3} + \frac{\pi}{3} n \) is:
[tex]\[ j(x) = 4 \csc 3x \][/tex]