Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which \( x \)-value is in the domain of the function \( f(x) = 2 \cot(3x) + 4 \), we need to understand when the cotangent function is defined. The cotangent function, \(\cot(x)\), is undefined whenever \( x \) is an integer multiple of \(\pi\) because \(\cot(x) = \frac{\cos(x)}{\sin(x)}\) and sine equals zero at integer multiples of \(\pi\).
Thus, for the function \( \cot(3x) \) to be defined, \( 3x \) should not be an integer multiple of \(\pi\). Let’s examine each given \( x \) value:
1. \( x = \frac{\pi}{3} \)
[tex]\[ 3x = 3 \left( \frac{\pi}{3} \right) = \pi \][/tex]
Since \(\pi\) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \(\frac{\pi}{3}\) is not in the domain.
2. \( x = \frac{\pi}{4} \)
[tex]\[ 3x = 3 \left( \frac{\pi}{4} \right) = \frac{3\pi}{4} \][/tex]
Since \(\frac{3\pi}{4}\) is not an integer multiple of \(\pi\), \( \cot(3x) \) is defined. So, \(\frac{\pi}{4}\) is in the domain.
3. \( x = 2\pi \)
[tex]\[ 3x = 3 (2\pi) = 6\pi \][/tex]
Since \( 6\pi \) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \( 2\pi \) is not in the domain.
4. \( x = \pi \)
[tex]\[ 3x = 3 \pi \][/tex]
Since \( 3\pi \) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \( \pi \) is not in the domain.
From analyzing the given values, we find that the \( x \)-value in the domain of the function \( f(x) = 2 \cot(3x) + 4 \) is:
[tex]\[ \boxed{\frac{\pi}{4}} \][/tex]
Thus, for the function \( \cot(3x) \) to be defined, \( 3x \) should not be an integer multiple of \(\pi\). Let’s examine each given \( x \) value:
1. \( x = \frac{\pi}{3} \)
[tex]\[ 3x = 3 \left( \frac{\pi}{3} \right) = \pi \][/tex]
Since \(\pi\) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \(\frac{\pi}{3}\) is not in the domain.
2. \( x = \frac{\pi}{4} \)
[tex]\[ 3x = 3 \left( \frac{\pi}{4} \right) = \frac{3\pi}{4} \][/tex]
Since \(\frac{3\pi}{4}\) is not an integer multiple of \(\pi\), \( \cot(3x) \) is defined. So, \(\frac{\pi}{4}\) is in the domain.
3. \( x = 2\pi \)
[tex]\[ 3x = 3 (2\pi) = 6\pi \][/tex]
Since \( 6\pi \) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \( 2\pi \) is not in the domain.
4. \( x = \pi \)
[tex]\[ 3x = 3 \pi \][/tex]
Since \( 3\pi \) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \( \pi \) is not in the domain.
From analyzing the given values, we find that the \( x \)-value in the domain of the function \( f(x) = 2 \cot(3x) + 4 \) is:
[tex]\[ \boxed{\frac{\pi}{4}} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.