Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which \( x \)-value is in the domain of the function \( f(x) = 2 \cot(3x) + 4 \), we need to understand when the cotangent function is defined. The cotangent function, \(\cot(x)\), is undefined whenever \( x \) is an integer multiple of \(\pi\) because \(\cot(x) = \frac{\cos(x)}{\sin(x)}\) and sine equals zero at integer multiples of \(\pi\).
Thus, for the function \( \cot(3x) \) to be defined, \( 3x \) should not be an integer multiple of \(\pi\). Let’s examine each given \( x \) value:
1. \( x = \frac{\pi}{3} \)
[tex]\[ 3x = 3 \left( \frac{\pi}{3} \right) = \pi \][/tex]
Since \(\pi\) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \(\frac{\pi}{3}\) is not in the domain.
2. \( x = \frac{\pi}{4} \)
[tex]\[ 3x = 3 \left( \frac{\pi}{4} \right) = \frac{3\pi}{4} \][/tex]
Since \(\frac{3\pi}{4}\) is not an integer multiple of \(\pi\), \( \cot(3x) \) is defined. So, \(\frac{\pi}{4}\) is in the domain.
3. \( x = 2\pi \)
[tex]\[ 3x = 3 (2\pi) = 6\pi \][/tex]
Since \( 6\pi \) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \( 2\pi \) is not in the domain.
4. \( x = \pi \)
[tex]\[ 3x = 3 \pi \][/tex]
Since \( 3\pi \) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \( \pi \) is not in the domain.
From analyzing the given values, we find that the \( x \)-value in the domain of the function \( f(x) = 2 \cot(3x) + 4 \) is:
[tex]\[ \boxed{\frac{\pi}{4}} \][/tex]
Thus, for the function \( \cot(3x) \) to be defined, \( 3x \) should not be an integer multiple of \(\pi\). Let’s examine each given \( x \) value:
1. \( x = \frac{\pi}{3} \)
[tex]\[ 3x = 3 \left( \frac{\pi}{3} \right) = \pi \][/tex]
Since \(\pi\) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \(\frac{\pi}{3}\) is not in the domain.
2. \( x = \frac{\pi}{4} \)
[tex]\[ 3x = 3 \left( \frac{\pi}{4} \right) = \frac{3\pi}{4} \][/tex]
Since \(\frac{3\pi}{4}\) is not an integer multiple of \(\pi\), \( \cot(3x) \) is defined. So, \(\frac{\pi}{4}\) is in the domain.
3. \( x = 2\pi \)
[tex]\[ 3x = 3 (2\pi) = 6\pi \][/tex]
Since \( 6\pi \) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \( 2\pi \) is not in the domain.
4. \( x = \pi \)
[tex]\[ 3x = 3 \pi \][/tex]
Since \( 3\pi \) is an integer multiple of \(\pi\), \( \cot(3x) \) is undefined. So, \( \pi \) is not in the domain.
From analyzing the given values, we find that the \( x \)-value in the domain of the function \( f(x) = 2 \cot(3x) + 4 \) is:
[tex]\[ \boxed{\frac{\pi}{4}} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.