Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Heather's work to find the distance between the points \( R(-3, -4) \) and \( S(5, 7) \) can be evaluated using the distance formula. The distance formula between two points \((x_1, y_1)\) and \((x_2, y_2)\) is given by:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Let's apply the coordinates for points \( R \) and \( S \) to this formula:
1. For point \( R(-3, -4) \) and point \( S(5, 7) \), we have:
[tex]\[ x_1 = -3, \quad y_1 = -4, \quad x_2 = 5, \quad y_2 = 7 \][/tex]
2. Substituting these values into the distance formula, we get:
[tex]\[ d = \sqrt{(5 - (-3))^2 + (7 - (-4))^2} \][/tex]
3. Simplify the expressions inside the parentheses:
[tex]\[ d = \sqrt{(5 + 3)^2 + (7 + 4)^2} \][/tex]
[tex]\[ d = \sqrt{8^2 + 11^2} \][/tex]
4. Continue to simplify by calculating the squares:
[tex]\[ d = \sqrt{64 + 121} \][/tex]
5. Add the squared terms together:
[tex]\[ d = \sqrt{185} \][/tex]
Comparing this to Heather's steps:
- She substituted into the distance formula as
[tex]\[ \sqrt{((-4) - (-3))^2 + (7 - 5)^2} \][/tex]
This should have been
[tex]\[ \sqrt{(5 - (-3))^2 + (7 - (-4))^2} \][/tex]
Thus, she confused the subtraction terms and made a substitution error.
Therefore, the correct answer is:
A. She substituted incorrectly into the distance formula.
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Let's apply the coordinates for points \( R \) and \( S \) to this formula:
1. For point \( R(-3, -4) \) and point \( S(5, 7) \), we have:
[tex]\[ x_1 = -3, \quad y_1 = -4, \quad x_2 = 5, \quad y_2 = 7 \][/tex]
2. Substituting these values into the distance formula, we get:
[tex]\[ d = \sqrt{(5 - (-3))^2 + (7 - (-4))^2} \][/tex]
3. Simplify the expressions inside the parentheses:
[tex]\[ d = \sqrt{(5 + 3)^2 + (7 + 4)^2} \][/tex]
[tex]\[ d = \sqrt{8^2 + 11^2} \][/tex]
4. Continue to simplify by calculating the squares:
[tex]\[ d = \sqrt{64 + 121} \][/tex]
5. Add the squared terms together:
[tex]\[ d = \sqrt{185} \][/tex]
Comparing this to Heather's steps:
- She substituted into the distance formula as
[tex]\[ \sqrt{((-4) - (-3))^2 + (7 - 5)^2} \][/tex]
This should have been
[tex]\[ \sqrt{(5 - (-3))^2 + (7 - (-4))^2} \][/tex]
Thus, she confused the subtraction terms and made a substitution error.
Therefore, the correct answer is:
A. She substituted incorrectly into the distance formula.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.