Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

The function [tex]$f(x) = x^2[tex]$[/tex] has been translated 9 units up and 4 units to the right to form the function [tex]$[/tex]g(x)[tex]$[/tex]. Which represents [tex]$[/tex]g(x)$[/tex]?

A. [tex]g(x) = (x + 9)^2 + 4[/tex]
B. [tex]g(x) = (x + 9)^2 - 4[/tex]
C. [tex]g(x) = (x - 4)^2 + 9[/tex]
D. [tex]g(x) = (x + 4)^2 + 9[/tex]

Sagot :

To determine the function \( g(x) \) after translating \( f(x) = x^2 \) 9 units up and 4 units to the right, let's follow these steps:

1. Translation 9 Units Up:
- When a function \( f(x) \) is translated \( k \) units up, we add \( k \) to the function. If we add 9 units up, the function becomes:
[tex]\[ f(x) + 9 \quad \implies \quad x^2 + 9 \][/tex]

2. Translation 4 Units to the Right:
- When a function \( f(x) \) is translated \( h \) units to the right, we replace \( x \) with \( (x - h) \). In this case, we replace \( x \) with \( (x - 4) \):
[tex]\[ f(x - 4) \quad \implies \quad (x - 4)^2 \][/tex]

3. Combining the Translations:
- First, apply the horizontal shift: \( f(x) \rightarrow f(x-4) = (x-4)^2 \)
- Then, apply the vertical shift: \( (x-4)^2 + 9 \)

Finally, the function \( g(x) \) is:
[tex]\[ g(x) = (x - 4)^2 + 9 \][/tex]

Therefore, the correct representation of \( g(x) \) is:
[tex]\[ g(x) = (x-4)^2 + 9 \][/tex]

Among the given options, the correct choice is:
[tex]\[ \boxed{g(x) = (x - 4)^2 + 9} \][/tex]