Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the interval over which the graph of the function \( f(x) = -(x + 8)^2 - 1 \) is decreasing, we need to analyze the properties and behavior of this function. Here is a step-by-step explanation:
1. Determine the form of the function: The given function is \( f(x) = -(x + 8)^2 - 1 \). This function represents a parabola.
2. Identify the direction of the parabola: Since the coefficient of the \((x + 8)^2\) term is negative (i.e., \(-(x + 8)^2\)), this is a downward-opening parabola.
3. Find the vertex of the parabola:
- The vertex form of a parabola is given by \( f(x) = a(x - h)^2 + k \), where \((h, k)\) is the vertex.
- For the given function, \( f(x) = -(x + 8)^2 - 1 \), we can rewrite it as \( f(x) = -(x - (-8))^2 - 1 \).
- Therefore, the vertex \((h, k)\) is at \((-8, -1)\).
4. Behavior of the parabola around the vertex:
- For a downward-opening parabola, it decreases to the left of the vertex and increases to the right of the vertex.
5. Identify the decreasing interval:
- Since the vertex is at \( x = -8 \) and the parabola opens downward, the function decreases for all \( x \) values to the left of \(-8\).
- Hence, the interval over which the graph of the function is decreasing is \( (-\infty, -8) \).
So, the correct interval over which the graph of \( f(x) = -(x + 8)^2 - 1 \) is decreasing is:
[tex]\[ (-\infty, -8) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{(-\infty, -8)} \][/tex]
1. Determine the form of the function: The given function is \( f(x) = -(x + 8)^2 - 1 \). This function represents a parabola.
2. Identify the direction of the parabola: Since the coefficient of the \((x + 8)^2\) term is negative (i.e., \(-(x + 8)^2\)), this is a downward-opening parabola.
3. Find the vertex of the parabola:
- The vertex form of a parabola is given by \( f(x) = a(x - h)^2 + k \), where \((h, k)\) is the vertex.
- For the given function, \( f(x) = -(x + 8)^2 - 1 \), we can rewrite it as \( f(x) = -(x - (-8))^2 - 1 \).
- Therefore, the vertex \((h, k)\) is at \((-8, -1)\).
4. Behavior of the parabola around the vertex:
- For a downward-opening parabola, it decreases to the left of the vertex and increases to the right of the vertex.
5. Identify the decreasing interval:
- Since the vertex is at \( x = -8 \) and the parabola opens downward, the function decreases for all \( x \) values to the left of \(-8\).
- Hence, the interval over which the graph of the function is decreasing is \( (-\infty, -8) \).
So, the correct interval over which the graph of \( f(x) = -(x + 8)^2 - 1 \) is decreasing is:
[tex]\[ (-\infty, -8) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{(-\infty, -8)} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.