Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the equation of the hyperbola, follow these steps carefully:
### Step 1: Identify Hyperbola Characteristics
Given:
- Foci: \((7, 5)\) and \((7, -5)\)
- Directrix: \(y = \frac{16}{5}\)
From the coordinates of the foci:
- The foci are vertically aligned at \( x = 7 \).
- This indicates that the hyperbola opens vertically, meaning its equation has the form \(\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1\).
### Step 2: Determine the Center
The center \((h, k)\) of the hyperbola lies at the midpoint between the foci, which is calculated as:
[tex]\[ h = 7, \quad k = 0 \][/tex]
Thus, the center is at \((7, 0)\).
### Step 3: Calculate Distance \(c\)
The distance to each focus from the center is represented by \(c\). Given the coordinates of the foci, the distance \(c\) is:
[tex]\[ c = 5 \][/tex]
### Step 4: Determine \(a\) Using the Directrix
The directrix \( y = \frac{16}{5} \) aids in finding the value of \(a\).
For vertical hyperbolas, \(|k - \text{directrix}_y| = \frac{a^2}{c}\):
[tex]\[ \left| 0 - \frac{16}{5} \right| = \frac{a^2}{5} \][/tex]
[tex]\[ \frac{16}{5} = \frac{a^2}{5} \][/tex]
Solving for \(a\):
[tex]\[ a^2 = \frac{16}{5} \cdot 5 = 16 \][/tex]
Thus:
[tex]\[ a = 4 \][/tex]
### Step 5: Determine \(b\) Using the Relationship
For hyperbolas, the relationship \(c^2 = a^2 + b^2\) holds true:
[tex]\[ c^2 = a^2 + b^2 \][/tex]
Given:
[tex]\[ 25 = 16 + b^2 \][/tex]
Solving for \(b^2\):
[tex]\[ b^2 = 25 - 16 = 9 \][/tex]
Therefore:
[tex]\[ b = 3 \][/tex]
### Step 6: Form the Equation
Given \(a^2 = 16\) and \(b^2 = 9\), the standard form for the hyperbola with these values is:
[tex]\[ \frac{(y-0)^2}{16} - \frac{(x-7)^2}{9} = 1 \][/tex]
Simplified to:
[tex]\[ \frac{y^2}{16} - \frac{(x-7)^2}{9} = 1 \][/tex]
Therefore, the correct equation of the hyperbola is:
[tex]\[ \boxed{\frac{y^2}{16} - \frac{(x-7)^2}{9} = 1} \][/tex]
### Step 1: Identify Hyperbola Characteristics
Given:
- Foci: \((7, 5)\) and \((7, -5)\)
- Directrix: \(y = \frac{16}{5}\)
From the coordinates of the foci:
- The foci are vertically aligned at \( x = 7 \).
- This indicates that the hyperbola opens vertically, meaning its equation has the form \(\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1\).
### Step 2: Determine the Center
The center \((h, k)\) of the hyperbola lies at the midpoint between the foci, which is calculated as:
[tex]\[ h = 7, \quad k = 0 \][/tex]
Thus, the center is at \((7, 0)\).
### Step 3: Calculate Distance \(c\)
The distance to each focus from the center is represented by \(c\). Given the coordinates of the foci, the distance \(c\) is:
[tex]\[ c = 5 \][/tex]
### Step 4: Determine \(a\) Using the Directrix
The directrix \( y = \frac{16}{5} \) aids in finding the value of \(a\).
For vertical hyperbolas, \(|k - \text{directrix}_y| = \frac{a^2}{c}\):
[tex]\[ \left| 0 - \frac{16}{5} \right| = \frac{a^2}{5} \][/tex]
[tex]\[ \frac{16}{5} = \frac{a^2}{5} \][/tex]
Solving for \(a\):
[tex]\[ a^2 = \frac{16}{5} \cdot 5 = 16 \][/tex]
Thus:
[tex]\[ a = 4 \][/tex]
### Step 5: Determine \(b\) Using the Relationship
For hyperbolas, the relationship \(c^2 = a^2 + b^2\) holds true:
[tex]\[ c^2 = a^2 + b^2 \][/tex]
Given:
[tex]\[ 25 = 16 + b^2 \][/tex]
Solving for \(b^2\):
[tex]\[ b^2 = 25 - 16 = 9 \][/tex]
Therefore:
[tex]\[ b = 3 \][/tex]
### Step 6: Form the Equation
Given \(a^2 = 16\) and \(b^2 = 9\), the standard form for the hyperbola with these values is:
[tex]\[ \frac{(y-0)^2}{16} - \frac{(x-7)^2}{9} = 1 \][/tex]
Simplified to:
[tex]\[ \frac{y^2}{16} - \frac{(x-7)^2}{9} = 1 \][/tex]
Therefore, the correct equation of the hyperbola is:
[tex]\[ \boxed{\frac{y^2}{16} - \frac{(x-7)^2}{9} = 1} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.