Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the equation of the hyperbola, follow these steps carefully:
### Step 1: Identify Hyperbola Characteristics
Given:
- Foci: \((7, 5)\) and \((7, -5)\)
- Directrix: \(y = \frac{16}{5}\)
From the coordinates of the foci:
- The foci are vertically aligned at \( x = 7 \).
- This indicates that the hyperbola opens vertically, meaning its equation has the form \(\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1\).
### Step 2: Determine the Center
The center \((h, k)\) of the hyperbola lies at the midpoint between the foci, which is calculated as:
[tex]\[ h = 7, \quad k = 0 \][/tex]
Thus, the center is at \((7, 0)\).
### Step 3: Calculate Distance \(c\)
The distance to each focus from the center is represented by \(c\). Given the coordinates of the foci, the distance \(c\) is:
[tex]\[ c = 5 \][/tex]
### Step 4: Determine \(a\) Using the Directrix
The directrix \( y = \frac{16}{5} \) aids in finding the value of \(a\).
For vertical hyperbolas, \(|k - \text{directrix}_y| = \frac{a^2}{c}\):
[tex]\[ \left| 0 - \frac{16}{5} \right| = \frac{a^2}{5} \][/tex]
[tex]\[ \frac{16}{5} = \frac{a^2}{5} \][/tex]
Solving for \(a\):
[tex]\[ a^2 = \frac{16}{5} \cdot 5 = 16 \][/tex]
Thus:
[tex]\[ a = 4 \][/tex]
### Step 5: Determine \(b\) Using the Relationship
For hyperbolas, the relationship \(c^2 = a^2 + b^2\) holds true:
[tex]\[ c^2 = a^2 + b^2 \][/tex]
Given:
[tex]\[ 25 = 16 + b^2 \][/tex]
Solving for \(b^2\):
[tex]\[ b^2 = 25 - 16 = 9 \][/tex]
Therefore:
[tex]\[ b = 3 \][/tex]
### Step 6: Form the Equation
Given \(a^2 = 16\) and \(b^2 = 9\), the standard form for the hyperbola with these values is:
[tex]\[ \frac{(y-0)^2}{16} - \frac{(x-7)^2}{9} = 1 \][/tex]
Simplified to:
[tex]\[ \frac{y^2}{16} - \frac{(x-7)^2}{9} = 1 \][/tex]
Therefore, the correct equation of the hyperbola is:
[tex]\[ \boxed{\frac{y^2}{16} - \frac{(x-7)^2}{9} = 1} \][/tex]
### Step 1: Identify Hyperbola Characteristics
Given:
- Foci: \((7, 5)\) and \((7, -5)\)
- Directrix: \(y = \frac{16}{5}\)
From the coordinates of the foci:
- The foci are vertically aligned at \( x = 7 \).
- This indicates that the hyperbola opens vertically, meaning its equation has the form \(\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1\).
### Step 2: Determine the Center
The center \((h, k)\) of the hyperbola lies at the midpoint between the foci, which is calculated as:
[tex]\[ h = 7, \quad k = 0 \][/tex]
Thus, the center is at \((7, 0)\).
### Step 3: Calculate Distance \(c\)
The distance to each focus from the center is represented by \(c\). Given the coordinates of the foci, the distance \(c\) is:
[tex]\[ c = 5 \][/tex]
### Step 4: Determine \(a\) Using the Directrix
The directrix \( y = \frac{16}{5} \) aids in finding the value of \(a\).
For vertical hyperbolas, \(|k - \text{directrix}_y| = \frac{a^2}{c}\):
[tex]\[ \left| 0 - \frac{16}{5} \right| = \frac{a^2}{5} \][/tex]
[tex]\[ \frac{16}{5} = \frac{a^2}{5} \][/tex]
Solving for \(a\):
[tex]\[ a^2 = \frac{16}{5} \cdot 5 = 16 \][/tex]
Thus:
[tex]\[ a = 4 \][/tex]
### Step 5: Determine \(b\) Using the Relationship
For hyperbolas, the relationship \(c^2 = a^2 + b^2\) holds true:
[tex]\[ c^2 = a^2 + b^2 \][/tex]
Given:
[tex]\[ 25 = 16 + b^2 \][/tex]
Solving for \(b^2\):
[tex]\[ b^2 = 25 - 16 = 9 \][/tex]
Therefore:
[tex]\[ b = 3 \][/tex]
### Step 6: Form the Equation
Given \(a^2 = 16\) and \(b^2 = 9\), the standard form for the hyperbola with these values is:
[tex]\[ \frac{(y-0)^2}{16} - \frac{(x-7)^2}{9} = 1 \][/tex]
Simplified to:
[tex]\[ \frac{y^2}{16} - \frac{(x-7)^2}{9} = 1 \][/tex]
Therefore, the correct equation of the hyperbola is:
[tex]\[ \boxed{\frac{y^2}{16} - \frac{(x-7)^2}{9} = 1} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.