Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Consider the quadratic function:
[tex]\[ f(x) = x^2 - 8x - 9 \][/tex]

What is the vertex of the function?

Vertex: [tex]\[ \left( \frac{-b}{2a}, f\left(\frac{-b}{2a}\right) \right) \][/tex]

Sagot :

To find the vertex of the quadratic function \( f(x) = x^2 - 8x - 9 \), we will use the vertex formula for a parabola given by \( f(x) = ax^2 + bx + c \):

The formula for the x-coordinate of the vertex is:
[tex]\[ x = \frac{-b}{2a} \][/tex]

In our function, we identify \( a = 1 \), \( b = -8 \), and \( c = -9 \).

First, we calculate the x-coordinate of the vertex:

[tex]\[ x = \frac{-(-8)}{2 \cdot 1} = \frac{8}{2} = 4 \][/tex]

Next, we need to find the y-coordinate of the vertex by substituting \( x = 4 \) back into the original function \( f(x) \):

[tex]\[ f(4) = (4)^2 - 8(4) - 9 \][/tex]

We calculate each term step-by-step:

[tex]\[ (4)^2 = 16 \][/tex]
[tex]\[ -8(4) = -32 \][/tex]

So plugging these back into the function:

[tex]\[ f(4) = 16 - 32 - 9 \][/tex]

Now, we simplify this:

[tex]\[ 16 - 32 = -16 \][/tex]
[tex]\[ -16 - 9 = -25 \][/tex]

Therefore, the y-coordinate of the vertex is:

[tex]\[ f(4) = -25 \][/tex]

Hence, the vertex of the function \( f(x) = x^2 - 8x - 9 \) is:

[tex]\[ (4, -25) \][/tex]

So, the vertex of the function is [tex]\(\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right) = (4, -25)\)[/tex].