Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Consider the quadratic function:
[tex]\[ f(x) = x^2 - 8x - 9 \][/tex]

What is the vertex of the function?

Vertex: [tex]\[ \left( \frac{-b}{2a}, f\left(\frac{-b}{2a}\right) \right) \][/tex]


Sagot :

To find the vertex of the quadratic function \( f(x) = x^2 - 8x - 9 \), we will use the vertex formula for a parabola given by \( f(x) = ax^2 + bx + c \):

The formula for the x-coordinate of the vertex is:
[tex]\[ x = \frac{-b}{2a} \][/tex]

In our function, we identify \( a = 1 \), \( b = -8 \), and \( c = -9 \).

First, we calculate the x-coordinate of the vertex:

[tex]\[ x = \frac{-(-8)}{2 \cdot 1} = \frac{8}{2} = 4 \][/tex]

Next, we need to find the y-coordinate of the vertex by substituting \( x = 4 \) back into the original function \( f(x) \):

[tex]\[ f(4) = (4)^2 - 8(4) - 9 \][/tex]

We calculate each term step-by-step:

[tex]\[ (4)^2 = 16 \][/tex]
[tex]\[ -8(4) = -32 \][/tex]

So plugging these back into the function:

[tex]\[ f(4) = 16 - 32 - 9 \][/tex]

Now, we simplify this:

[tex]\[ 16 - 32 = -16 \][/tex]
[tex]\[ -16 - 9 = -25 \][/tex]

Therefore, the y-coordinate of the vertex is:

[tex]\[ f(4) = -25 \][/tex]

Hence, the vertex of the function \( f(x) = x^2 - 8x - 9 \) is:

[tex]\[ (4, -25) \][/tex]

So, the vertex of the function is [tex]\(\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right) = (4, -25)\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.