Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the vertex of the quadratic function \( f(x) = x^2 - 8x - 9 \), we will use the vertex formula for a parabola given by \( f(x) = ax^2 + bx + c \):
The formula for the x-coordinate of the vertex is:
[tex]\[ x = \frac{-b}{2a} \][/tex]
In our function, we identify \( a = 1 \), \( b = -8 \), and \( c = -9 \).
First, we calculate the x-coordinate of the vertex:
[tex]\[ x = \frac{-(-8)}{2 \cdot 1} = \frac{8}{2} = 4 \][/tex]
Next, we need to find the y-coordinate of the vertex by substituting \( x = 4 \) back into the original function \( f(x) \):
[tex]\[ f(4) = (4)^2 - 8(4) - 9 \][/tex]
We calculate each term step-by-step:
[tex]\[ (4)^2 = 16 \][/tex]
[tex]\[ -8(4) = -32 \][/tex]
So plugging these back into the function:
[tex]\[ f(4) = 16 - 32 - 9 \][/tex]
Now, we simplify this:
[tex]\[ 16 - 32 = -16 \][/tex]
[tex]\[ -16 - 9 = -25 \][/tex]
Therefore, the y-coordinate of the vertex is:
[tex]\[ f(4) = -25 \][/tex]
Hence, the vertex of the function \( f(x) = x^2 - 8x - 9 \) is:
[tex]\[ (4, -25) \][/tex]
So, the vertex of the function is [tex]\(\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right) = (4, -25)\)[/tex].
The formula for the x-coordinate of the vertex is:
[tex]\[ x = \frac{-b}{2a} \][/tex]
In our function, we identify \( a = 1 \), \( b = -8 \), and \( c = -9 \).
First, we calculate the x-coordinate of the vertex:
[tex]\[ x = \frac{-(-8)}{2 \cdot 1} = \frac{8}{2} = 4 \][/tex]
Next, we need to find the y-coordinate of the vertex by substituting \( x = 4 \) back into the original function \( f(x) \):
[tex]\[ f(4) = (4)^2 - 8(4) - 9 \][/tex]
We calculate each term step-by-step:
[tex]\[ (4)^2 = 16 \][/tex]
[tex]\[ -8(4) = -32 \][/tex]
So plugging these back into the function:
[tex]\[ f(4) = 16 - 32 - 9 \][/tex]
Now, we simplify this:
[tex]\[ 16 - 32 = -16 \][/tex]
[tex]\[ -16 - 9 = -25 \][/tex]
Therefore, the y-coordinate of the vertex is:
[tex]\[ f(4) = -25 \][/tex]
Hence, the vertex of the function \( f(x) = x^2 - 8x - 9 \) is:
[tex]\[ (4, -25) \][/tex]
So, the vertex of the function is [tex]\(\left(\frac{-b}{2a}, f\left(\frac{-b}{2a}\right)\right) = (4, -25)\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.