Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the divergence of the vector field \(\overrightarrow{F}\), we start with its expression:
[tex]\[ \overrightarrow{F} = \frac{-2 x y z}{\left(x^2+y^2\right)^2} \hat{i} + \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2} \hat{j} + \frac{y}{\left(x^2+y^2\right)} \hat{k} \][/tex]
The divergence \(\operatorname{div} \vec{F}\) is calculated as:
[tex]\[ \operatorname{div} \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \][/tex]
where \(F_1\), \(F_2\), and \(F_3\) are the components of \(\overrightarrow{F}\) along the \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\) directions, respectively:
[tex]\[ F_1 = \frac{-2 x y z}{\left(x^2+y^2\right)^2}, \quad F_2 = \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2}, \quad F_3 = \frac{y}{\left(x^2+y^2\right)} \][/tex]
### Step 1: Compute \(\frac{\partial F_1}{\partial x}\)
[tex]\[ \frac{\partial F_1}{\partial x} = \frac{\partial}{\partial x} \left( \frac{-2 x y z}{\left(x^2+y^2\right)^2} \right) \][/tex]
### Step 2: Compute \(\frac{\partial F_2}{\partial y}\)
[tex]\[ \frac{\partial F_2}{\partial y} = \frac{\partial}{\partial y} \left( \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2} \right) \][/tex]
### Step 3: Compute \(\frac{\partial F_3}{\partial z}\)
[tex]\[ \frac{\partial F_3}{\partial z} = \frac{\partial}{\partial z} \left( \frac{y}{\left(x^2+y^2\right)} \right) = 0 \quad (\text{since } F_3 \text{ does not depend on } z) \][/tex]
### Combine the partial derivatives
[tex]\[ \operatorname{div} \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \][/tex]
By performing the differentiation and combining the terms, the divergence \(\operatorname{div} \vec{F}\) results in:
[tex]\[ \operatorname{div} \vec{F} = \frac{8.0 x^2 y z}{(x^2 + y^2)^3} - \frac{4.0 y z (x^2 - y^2)}{(x^2 + y^2)^3} - \frac{4.0 y z}{(x^2 + y^2)^2} \][/tex]
Therefore, substituting the expressions, we achieve the following result:
[tex]\[ \boxed{0} \][/tex]
Thus, the divergence of the vector field \(\overrightarrow{F}\) is:
(d) zero
[tex]\[ \overrightarrow{F} = \frac{-2 x y z}{\left(x^2+y^2\right)^2} \hat{i} + \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2} \hat{j} + \frac{y}{\left(x^2+y^2\right)} \hat{k} \][/tex]
The divergence \(\operatorname{div} \vec{F}\) is calculated as:
[tex]\[ \operatorname{div} \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \][/tex]
where \(F_1\), \(F_2\), and \(F_3\) are the components of \(\overrightarrow{F}\) along the \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\) directions, respectively:
[tex]\[ F_1 = \frac{-2 x y z}{\left(x^2+y^2\right)^2}, \quad F_2 = \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2}, \quad F_3 = \frac{y}{\left(x^2+y^2\right)} \][/tex]
### Step 1: Compute \(\frac{\partial F_1}{\partial x}\)
[tex]\[ \frac{\partial F_1}{\partial x} = \frac{\partial}{\partial x} \left( \frac{-2 x y z}{\left(x^2+y^2\right)^2} \right) \][/tex]
### Step 2: Compute \(\frac{\partial F_2}{\partial y}\)
[tex]\[ \frac{\partial F_2}{\partial y} = \frac{\partial}{\partial y} \left( \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2} \right) \][/tex]
### Step 3: Compute \(\frac{\partial F_3}{\partial z}\)
[tex]\[ \frac{\partial F_3}{\partial z} = \frac{\partial}{\partial z} \left( \frac{y}{\left(x^2+y^2\right)} \right) = 0 \quad (\text{since } F_3 \text{ does not depend on } z) \][/tex]
### Combine the partial derivatives
[tex]\[ \operatorname{div} \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \][/tex]
By performing the differentiation and combining the terms, the divergence \(\operatorname{div} \vec{F}\) results in:
[tex]\[ \operatorname{div} \vec{F} = \frac{8.0 x^2 y z}{(x^2 + y^2)^3} - \frac{4.0 y z (x^2 - y^2)}{(x^2 + y^2)^3} - \frac{4.0 y z}{(x^2 + y^2)^2} \][/tex]
Therefore, substituting the expressions, we achieve the following result:
[tex]\[ \boxed{0} \][/tex]
Thus, the divergence of the vector field \(\overrightarrow{F}\) is:
(d) zero
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.