Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the divergence of the vector field \(\overrightarrow{F}\), we start with its expression:
[tex]\[ \overrightarrow{F} = \frac{-2 x y z}{\left(x^2+y^2\right)^2} \hat{i} + \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2} \hat{j} + \frac{y}{\left(x^2+y^2\right)} \hat{k} \][/tex]
The divergence \(\operatorname{div} \vec{F}\) is calculated as:
[tex]\[ \operatorname{div} \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \][/tex]
where \(F_1\), \(F_2\), and \(F_3\) are the components of \(\overrightarrow{F}\) along the \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\) directions, respectively:
[tex]\[ F_1 = \frac{-2 x y z}{\left(x^2+y^2\right)^2}, \quad F_2 = \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2}, \quad F_3 = \frac{y}{\left(x^2+y^2\right)} \][/tex]
### Step 1: Compute \(\frac{\partial F_1}{\partial x}\)
[tex]\[ \frac{\partial F_1}{\partial x} = \frac{\partial}{\partial x} \left( \frac{-2 x y z}{\left(x^2+y^2\right)^2} \right) \][/tex]
### Step 2: Compute \(\frac{\partial F_2}{\partial y}\)
[tex]\[ \frac{\partial F_2}{\partial y} = \frac{\partial}{\partial y} \left( \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2} \right) \][/tex]
### Step 3: Compute \(\frac{\partial F_3}{\partial z}\)
[tex]\[ \frac{\partial F_3}{\partial z} = \frac{\partial}{\partial z} \left( \frac{y}{\left(x^2+y^2\right)} \right) = 0 \quad (\text{since } F_3 \text{ does not depend on } z) \][/tex]
### Combine the partial derivatives
[tex]\[ \operatorname{div} \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \][/tex]
By performing the differentiation and combining the terms, the divergence \(\operatorname{div} \vec{F}\) results in:
[tex]\[ \operatorname{div} \vec{F} = \frac{8.0 x^2 y z}{(x^2 + y^2)^3} - \frac{4.0 y z (x^2 - y^2)}{(x^2 + y^2)^3} - \frac{4.0 y z}{(x^2 + y^2)^2} \][/tex]
Therefore, substituting the expressions, we achieve the following result:
[tex]\[ \boxed{0} \][/tex]
Thus, the divergence of the vector field \(\overrightarrow{F}\) is:
(d) zero
[tex]\[ \overrightarrow{F} = \frac{-2 x y z}{\left(x^2+y^2\right)^2} \hat{i} + \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2} \hat{j} + \frac{y}{\left(x^2+y^2\right)} \hat{k} \][/tex]
The divergence \(\operatorname{div} \vec{F}\) is calculated as:
[tex]\[ \operatorname{div} \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \][/tex]
where \(F_1\), \(F_2\), and \(F_3\) are the components of \(\overrightarrow{F}\) along the \(\hat{i}\), \(\hat{j}\), and \(\hat{k}\) directions, respectively:
[tex]\[ F_1 = \frac{-2 x y z}{\left(x^2+y^2\right)^2}, \quad F_2 = \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2}, \quad F_3 = \frac{y}{\left(x^2+y^2\right)} \][/tex]
### Step 1: Compute \(\frac{\partial F_1}{\partial x}\)
[tex]\[ \frac{\partial F_1}{\partial x} = \frac{\partial}{\partial x} \left( \frac{-2 x y z}{\left(x^2+y^2\right)^2} \right) \][/tex]
### Step 2: Compute \(\frac{\partial F_2}{\partial y}\)
[tex]\[ \frac{\partial F_2}{\partial y} = \frac{\partial}{\partial y} \left( \frac{\left(x^2-y^2\right) z}{\left(x^2+y^2\right)^2} \right) \][/tex]
### Step 3: Compute \(\frac{\partial F_3}{\partial z}\)
[tex]\[ \frac{\partial F_3}{\partial z} = \frac{\partial}{\partial z} \left( \frac{y}{\left(x^2+y^2\right)} \right) = 0 \quad (\text{since } F_3 \text{ does not depend on } z) \][/tex]
### Combine the partial derivatives
[tex]\[ \operatorname{div} \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z} \][/tex]
By performing the differentiation and combining the terms, the divergence \(\operatorname{div} \vec{F}\) results in:
[tex]\[ \operatorname{div} \vec{F} = \frac{8.0 x^2 y z}{(x^2 + y^2)^3} - \frac{4.0 y z (x^2 - y^2)}{(x^2 + y^2)^3} - \frac{4.0 y z}{(x^2 + y^2)^2} \][/tex]
Therefore, substituting the expressions, we achieve the following result:
[tex]\[ \boxed{0} \][/tex]
Thus, the divergence of the vector field \(\overrightarrow{F}\) is:
(d) zero
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.