Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

44. The matrix [tex]$\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$[/tex] is

(a) orthogonal
(b) Hermitian
(c) symmetric
(d) antisymmetric


Sagot :

Let's analyze the given matrix:

[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

We will examine whether this matrix is orthogonal, hermitian, symmetric, or antisymmetric.

1. Orthogonal Matrix:

A matrix \( A \) is orthogonal if \( A \cdot A^T = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix.

Calculate the transpose of \( A \):

[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

Now, compute \( A \cdot A^T \):

[tex]\[ A \cdot A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \][/tex]

Since \( A \cdot A^T = I \), \( A \) is orthogonal.

2. Hermitian Matrix:

A matrix \( A \) is hermitian if \( A = A^ \), where \( A^ \) is the conjugate transpose of \( A \). For real matrices, hermitian is simply the same as symmetric.

For our real matrix \( A \):

[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

Clearly, \( A \neq A^T \), so \( A \) is not hermitian.

3. Symmetric Matrix:

A matrix \( A \) is symmetric if \( A = A^T \).

As shown above,

[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

Since \( A \neq A^T \), \( A \) is not symmetric.

4. Antisymmetric Matrix:

A matrix \( A \) is antisymmetric (or skew-symmetric) if \( A = -A^T \).

Calculate \(-A^T\):

[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]

Comparing \( A \) with \(-A^T\):

[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]

Clearly, \( A \neq -A^T \) due to the \(1\) at the (3, 3) position. Therefore, \( A \) is not antisymmetric.

Summarizing, the matrix

[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]

is:
(a) orthogonal: True
(b) hermitian: False
(c) symmetric: False
(d) antisymmetric: False

Thus, the correct answer is:
[tex]\[ \boxed{a} \][/tex]