Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's analyze the given matrix:
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
We will examine whether this matrix is orthogonal, hermitian, symmetric, or antisymmetric.
1. Orthogonal Matrix:
A matrix \( A \) is orthogonal if \( A \cdot A^T = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix.
Calculate the transpose of \( A \):
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Now, compute \( A \cdot A^T \):
[tex]\[ A \cdot A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \][/tex]
Since \( A \cdot A^T = I \), \( A \) is orthogonal.
2. Hermitian Matrix:
A matrix \( A \) is hermitian if \( A = A^ \), where \( A^ \) is the conjugate transpose of \( A \). For real matrices, hermitian is simply the same as symmetric.
For our real matrix \( A \):
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Clearly, \( A \neq A^T \), so \( A \) is not hermitian.
3. Symmetric Matrix:
A matrix \( A \) is symmetric if \( A = A^T \).
As shown above,
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Since \( A \neq A^T \), \( A \) is not symmetric.
4. Antisymmetric Matrix:
A matrix \( A \) is antisymmetric (or skew-symmetric) if \( A = -A^T \).
Calculate \(-A^T\):
[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]
Comparing \( A \) with \(-A^T\):
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]
Clearly, \( A \neq -A^T \) due to the \(1\) at the (3, 3) position. Therefore, \( A \) is not antisymmetric.
Summarizing, the matrix
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
is:
(a) orthogonal: True
(b) hermitian: False
(c) symmetric: False
(d) antisymmetric: False
Thus, the correct answer is:
[tex]\[ \boxed{a} \][/tex]
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
We will examine whether this matrix is orthogonal, hermitian, symmetric, or antisymmetric.
1. Orthogonal Matrix:
A matrix \( A \) is orthogonal if \( A \cdot A^T = I \), where \( A^T \) is the transpose of \( A \) and \( I \) is the identity matrix.
Calculate the transpose of \( A \):
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Now, compute \( A \cdot A^T \):
[tex]\[ A \cdot A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I \][/tex]
Since \( A \cdot A^T = I \), \( A \) is orthogonal.
2. Hermitian Matrix:
A matrix \( A \) is hermitian if \( A = A^ \), where \( A^ \) is the conjugate transpose of \( A \). For real matrices, hermitian is simply the same as symmetric.
For our real matrix \( A \):
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Clearly, \( A \neq A^T \), so \( A \) is not hermitian.
3. Symmetric Matrix:
A matrix \( A \) is symmetric if \( A = A^T \).
As shown above,
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ A^T = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
Since \( A \neq A^T \), \( A \) is not symmetric.
4. Antisymmetric Matrix:
A matrix \( A \) is antisymmetric (or skew-symmetric) if \( A = -A^T \).
Calculate \(-A^T\):
[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]
Comparing \( A \) with \(-A^T\):
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
[tex]\[ -A^T = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \][/tex]
Clearly, \( A \neq -A^T \) due to the \(1\) at the (3, 3) position. Therefore, \( A \) is not antisymmetric.
Summarizing, the matrix
[tex]\[ A = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \][/tex]
is:
(a) orthogonal: True
(b) hermitian: False
(c) symmetric: False
(d) antisymmetric: False
Thus, the correct answer is:
[tex]\[ \boxed{a} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.