Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the area bounded by the curve \(y = x|x|\), the \(x\)-axis, and the ordinates \(x = 1\) and \(x = -1\), we can break the analysis into two segments: one for \(x\) in the interval \([-1, 0]\) and one for \(x\) in the interval \([0, 1]\).
### For \(0 \le x \le 1\):
In this interval, \(x\) is non-negative, so \(|x| = x\). Therefore, the equation \(y = x|x|\) simplifies to:
[tex]\[ y = x \cdot x = x^2. \][/tex]
We need to find the area under the curve \(y = x^2\) from \(x = 0\) to \(x = 1\). We do this by integrating \(x^2\) with respect to \(x\):
[tex]\[ \text{Area}_{\text{positive}} = \int_{0}^{1} x^2 \, dx. \][/tex]
Evaluating this integral:
[tex]\[ \int_{0}^{1} x^2 \, dx = \left[\frac{x^3}{3}\right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}. \][/tex]
### For \(-1 \le x < 0\):
In this interval, \(x\) is negative, so \(|x| = -x\). Therefore, the equation \(y = x|x|\) simplifies to:
[tex]\[ y = x \cdot (-x) = -x^2. \][/tex]
We need to find the area under the curve \(y = -x^2\) from \(x = -1\) to \(x = 0\). We do this by integrating \(-x^2\) with respect to \(x\):
[tex]\[ \text{Area}_{\text{negative}} = \int_{-1}^{0} -x^2 \, dx. \][/tex]
Evaluating this integral:
[tex]\[ \int_{-1}^{0} -x^2 \, dx = -\int_{-1}^{0} x^2 \, dx = -\left[\frac{x^3}{3}\right]_{-1}^{0} = -\left(\frac{0^3}{3} - \frac{(-1)^3}{3}\right) = -\left(0 - \left(-\frac{1}{3}\right)\right) = -\left(0 + \frac{1}{3}\right) = -\frac{1}{3}. \][/tex]
### Total Area Bounded:
The total area bounded by the curve and the \(x\)-axis in the interval \([-1, 1]\) is obtained by adding the absolute values of the areas from the two segments:
[tex]\[ \text{Total Area} = \text{Area}_{\text{positive}} + \text{Area}_{\text{negative}} = \frac{1}{3} + \left(-\frac{1}{3}\right) = 0. \][/tex]
Hence, the area bounded by the curve \(y = x|x|\), the \(x\)-axis, and the ordinates \(x = 1\) and \(x = -1\) is:
[tex]\( \boxed{0} \)[/tex].
### For \(0 \le x \le 1\):
In this interval, \(x\) is non-negative, so \(|x| = x\). Therefore, the equation \(y = x|x|\) simplifies to:
[tex]\[ y = x \cdot x = x^2. \][/tex]
We need to find the area under the curve \(y = x^2\) from \(x = 0\) to \(x = 1\). We do this by integrating \(x^2\) with respect to \(x\):
[tex]\[ \text{Area}_{\text{positive}} = \int_{0}^{1} x^2 \, dx. \][/tex]
Evaluating this integral:
[tex]\[ \int_{0}^{1} x^2 \, dx = \left[\frac{x^3}{3}\right]_{0}^{1} = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}. \][/tex]
### For \(-1 \le x < 0\):
In this interval, \(x\) is negative, so \(|x| = -x\). Therefore, the equation \(y = x|x|\) simplifies to:
[tex]\[ y = x \cdot (-x) = -x^2. \][/tex]
We need to find the area under the curve \(y = -x^2\) from \(x = -1\) to \(x = 0\). We do this by integrating \(-x^2\) with respect to \(x\):
[tex]\[ \text{Area}_{\text{negative}} = \int_{-1}^{0} -x^2 \, dx. \][/tex]
Evaluating this integral:
[tex]\[ \int_{-1}^{0} -x^2 \, dx = -\int_{-1}^{0} x^2 \, dx = -\left[\frac{x^3}{3}\right]_{-1}^{0} = -\left(\frac{0^3}{3} - \frac{(-1)^3}{3}\right) = -\left(0 - \left(-\frac{1}{3}\right)\right) = -\left(0 + \frac{1}{3}\right) = -\frac{1}{3}. \][/tex]
### Total Area Bounded:
The total area bounded by the curve and the \(x\)-axis in the interval \([-1, 1]\) is obtained by adding the absolute values of the areas from the two segments:
[tex]\[ \text{Total Area} = \text{Area}_{\text{positive}} + \text{Area}_{\text{negative}} = \frac{1}{3} + \left(-\frac{1}{3}\right) = 0. \][/tex]
Hence, the area bounded by the curve \(y = x|x|\), the \(x\)-axis, and the ordinates \(x = 1\) and \(x = -1\) is:
[tex]\( \boxed{0} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.