Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem, we need to determine the number of elements in the intersection of two sets: \(P\) and \(Q\).
1. Define the sets:
- Set \(P\) is the set of multiples of \(6\) that are less than \(50\).
- Set \(Q\) is the set of multiples of \(12\) that are less than \(50\).
2. List the elements of each set:
- The multiples of \(6\) less than \(50\) are:
\(6, 12, 18, 24, 30, 36, 42, 48\)
Hence, \(P = \{6, 12, 18, 24, 30, 36, 42, 48\}\)
- The multiples of \(12\) less than \(50\) are:
\(12, 24, 36, 48\)
Hence, \(Q = \{12, 24, 36, 48\}\)
3. Find the intersection of \(P\) and \(Q\):
- The intersection of two sets includes only the elements that are present in both sets.
- The common elements in both \(P\) and \(Q\) are:
\(12, 24, 36, 48\)
Therefore, \(P \cap Q = \{12, 24, 36, 48\}\)
4. Count the number of elements in the intersection:
- The number of elements (also known as the cardinality) in the set \(P \cap Q\) is given by counting the elements in \(\{12, 24, 36, 48\}\).
- There are \(4\) elements in the intersection set.
5. Conclusion:
- The number of elements in the intersection of sets \(P\) and \(Q\) is \(4\).
Thus, [tex]\(n(P \cap Q) = 4\)[/tex].
1. Define the sets:
- Set \(P\) is the set of multiples of \(6\) that are less than \(50\).
- Set \(Q\) is the set of multiples of \(12\) that are less than \(50\).
2. List the elements of each set:
- The multiples of \(6\) less than \(50\) are:
\(6, 12, 18, 24, 30, 36, 42, 48\)
Hence, \(P = \{6, 12, 18, 24, 30, 36, 42, 48\}\)
- The multiples of \(12\) less than \(50\) are:
\(12, 24, 36, 48\)
Hence, \(Q = \{12, 24, 36, 48\}\)
3. Find the intersection of \(P\) and \(Q\):
- The intersection of two sets includes only the elements that are present in both sets.
- The common elements in both \(P\) and \(Q\) are:
\(12, 24, 36, 48\)
Therefore, \(P \cap Q = \{12, 24, 36, 48\}\)
4. Count the number of elements in the intersection:
- The number of elements (also known as the cardinality) in the set \(P \cap Q\) is given by counting the elements in \(\{12, 24, 36, 48\}\).
- There are \(4\) elements in the intersection set.
5. Conclusion:
- The number of elements in the intersection of sets \(P\) and \(Q\) is \(4\).
Thus, [tex]\(n(P \cap Q) = 4\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.