At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's go through this problem step-by-step to determine the total area if we use 5 smaller pieces from the first cardboard and 3 smaller pieces from the second cardboard.
### Step 1: Convert Mixed Numbers to Improper Fractions
1. The first cardboard:
- Length: \(2 \frac{1}{5}\) is \(2 + 0.2 = 2.2\)
- Breadth: \(1 \frac{1}{5}\) is \(1 + 0.2 = 1.2\)
2. The second cardboard:
- Length: \(3 \frac{1}{5}\) is \(3 + 0.2 = 3.2\)
- Breadth: \(2 \frac{2}{5}\) is \(2 + 0.4 = 2.4\)
### Step 2: Calculate the Areas of the Cardboards
1. Area of the first cardboard:
[tex]\[ \text{Area}_{\text{first}} = \text{Length}_{\text{first}} \times \text{Breadth}_{\text{first}} = 2.2 \times 1.2 = 2.64 \, \text{m}^2 \][/tex]
2. Area of the second cardboard:
[tex]\[ \text{Area}_{\text{second}} = \text{Length}_{\text{second}} \times \text{Breadth}_{\text{second}} = 3.2 \times 2.4 = 7.68 \, \text{m}^2 \][/tex]
### Step 3: Calculate the Area of One Small Piece from Each Cardboard
Since each cardboard is divided into 10 equal pieces:
1. Area of one small piece from the first cardboard:
[tex]\[ \text{Area}_{\text{piece, first}} = \frac{\text{Area}_{\text{first}}}{10} = \frac{2.64}{10} = 0.264 \, \text{m}^2 \][/tex]
2. Area of one small piece from the second cardboard:
[tex]\[ \text{Area}_{\text{piece, second}} = \frac{\text{Area}_{\text{second}}}{10} = \frac{7.68}{10} = 0.768 \, \text{m}^2 \][/tex]
### Step 4: Calculate the Total Area Used
Using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard:
1. Area from 5 pieces from the first cardboard:
[tex]\[ \text{Total Area}_{\text{from first}} = 5 \times \text{Area}_{\text{piece, first}} = 5 \times 0.264 = 1.32 \, \text{m}^2 \][/tex]
2. Area from 3 pieces from the second cardboard:
[tex]\[ \text{Total Area}_{\text{from second}} = 3 \times \text{Area}_{\text{piece, second}} = 3 \times 0.768 = 2.304 \, \text{m}^2 \][/tex]
3. Total area of the new cardboard:
[tex]\[ \text{Total Area} = \text{Total Area}_{\text{from first}} + \text{Total Area}_{\text{from second}} = 1.32 + 2.304 = 3.624 \, \text{m}^2 \][/tex]
### Conclusion
Therefore, the total area of a cardboard made using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard is [tex]\(3.624 \, \text{m}^2\)[/tex].
### Step 1: Convert Mixed Numbers to Improper Fractions
1. The first cardboard:
- Length: \(2 \frac{1}{5}\) is \(2 + 0.2 = 2.2\)
- Breadth: \(1 \frac{1}{5}\) is \(1 + 0.2 = 1.2\)
2. The second cardboard:
- Length: \(3 \frac{1}{5}\) is \(3 + 0.2 = 3.2\)
- Breadth: \(2 \frac{2}{5}\) is \(2 + 0.4 = 2.4\)
### Step 2: Calculate the Areas of the Cardboards
1. Area of the first cardboard:
[tex]\[ \text{Area}_{\text{first}} = \text{Length}_{\text{first}} \times \text{Breadth}_{\text{first}} = 2.2 \times 1.2 = 2.64 \, \text{m}^2 \][/tex]
2. Area of the second cardboard:
[tex]\[ \text{Area}_{\text{second}} = \text{Length}_{\text{second}} \times \text{Breadth}_{\text{second}} = 3.2 \times 2.4 = 7.68 \, \text{m}^2 \][/tex]
### Step 3: Calculate the Area of One Small Piece from Each Cardboard
Since each cardboard is divided into 10 equal pieces:
1. Area of one small piece from the first cardboard:
[tex]\[ \text{Area}_{\text{piece, first}} = \frac{\text{Area}_{\text{first}}}{10} = \frac{2.64}{10} = 0.264 \, \text{m}^2 \][/tex]
2. Area of one small piece from the second cardboard:
[tex]\[ \text{Area}_{\text{piece, second}} = \frac{\text{Area}_{\text{second}}}{10} = \frac{7.68}{10} = 0.768 \, \text{m}^2 \][/tex]
### Step 4: Calculate the Total Area Used
Using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard:
1. Area from 5 pieces from the first cardboard:
[tex]\[ \text{Total Area}_{\text{from first}} = 5 \times \text{Area}_{\text{piece, first}} = 5 \times 0.264 = 1.32 \, \text{m}^2 \][/tex]
2. Area from 3 pieces from the second cardboard:
[tex]\[ \text{Total Area}_{\text{from second}} = 3 \times \text{Area}_{\text{piece, second}} = 3 \times 0.768 = 2.304 \, \text{m}^2 \][/tex]
3. Total area of the new cardboard:
[tex]\[ \text{Total Area} = \text{Total Area}_{\text{from first}} + \text{Total Area}_{\text{from second}} = 1.32 + 2.304 = 3.624 \, \text{m}^2 \][/tex]
### Conclusion
Therefore, the total area of a cardboard made using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard is [tex]\(3.624 \, \text{m}^2\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.