Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's go through this problem step-by-step to determine the total area if we use 5 smaller pieces from the first cardboard and 3 smaller pieces from the second cardboard.
### Step 1: Convert Mixed Numbers to Improper Fractions
1. The first cardboard:
- Length: \(2 \frac{1}{5}\) is \(2 + 0.2 = 2.2\)
- Breadth: \(1 \frac{1}{5}\) is \(1 + 0.2 = 1.2\)
2. The second cardboard:
- Length: \(3 \frac{1}{5}\) is \(3 + 0.2 = 3.2\)
- Breadth: \(2 \frac{2}{5}\) is \(2 + 0.4 = 2.4\)
### Step 2: Calculate the Areas of the Cardboards
1. Area of the first cardboard:
[tex]\[ \text{Area}_{\text{first}} = \text{Length}_{\text{first}} \times \text{Breadth}_{\text{first}} = 2.2 \times 1.2 = 2.64 \, \text{m}^2 \][/tex]
2. Area of the second cardboard:
[tex]\[ \text{Area}_{\text{second}} = \text{Length}_{\text{second}} \times \text{Breadth}_{\text{second}} = 3.2 \times 2.4 = 7.68 \, \text{m}^2 \][/tex]
### Step 3: Calculate the Area of One Small Piece from Each Cardboard
Since each cardboard is divided into 10 equal pieces:
1. Area of one small piece from the first cardboard:
[tex]\[ \text{Area}_{\text{piece, first}} = \frac{\text{Area}_{\text{first}}}{10} = \frac{2.64}{10} = 0.264 \, \text{m}^2 \][/tex]
2. Area of one small piece from the second cardboard:
[tex]\[ \text{Area}_{\text{piece, second}} = \frac{\text{Area}_{\text{second}}}{10} = \frac{7.68}{10} = 0.768 \, \text{m}^2 \][/tex]
### Step 4: Calculate the Total Area Used
Using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard:
1. Area from 5 pieces from the first cardboard:
[tex]\[ \text{Total Area}_{\text{from first}} = 5 \times \text{Area}_{\text{piece, first}} = 5 \times 0.264 = 1.32 \, \text{m}^2 \][/tex]
2. Area from 3 pieces from the second cardboard:
[tex]\[ \text{Total Area}_{\text{from second}} = 3 \times \text{Area}_{\text{piece, second}} = 3 \times 0.768 = 2.304 \, \text{m}^2 \][/tex]
3. Total area of the new cardboard:
[tex]\[ \text{Total Area} = \text{Total Area}_{\text{from first}} + \text{Total Area}_{\text{from second}} = 1.32 + 2.304 = 3.624 \, \text{m}^2 \][/tex]
### Conclusion
Therefore, the total area of a cardboard made using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard is [tex]\(3.624 \, \text{m}^2\)[/tex].
### Step 1: Convert Mixed Numbers to Improper Fractions
1. The first cardboard:
- Length: \(2 \frac{1}{5}\) is \(2 + 0.2 = 2.2\)
- Breadth: \(1 \frac{1}{5}\) is \(1 + 0.2 = 1.2\)
2. The second cardboard:
- Length: \(3 \frac{1}{5}\) is \(3 + 0.2 = 3.2\)
- Breadth: \(2 \frac{2}{5}\) is \(2 + 0.4 = 2.4\)
### Step 2: Calculate the Areas of the Cardboards
1. Area of the first cardboard:
[tex]\[ \text{Area}_{\text{first}} = \text{Length}_{\text{first}} \times \text{Breadth}_{\text{first}} = 2.2 \times 1.2 = 2.64 \, \text{m}^2 \][/tex]
2. Area of the second cardboard:
[tex]\[ \text{Area}_{\text{second}} = \text{Length}_{\text{second}} \times \text{Breadth}_{\text{second}} = 3.2 \times 2.4 = 7.68 \, \text{m}^2 \][/tex]
### Step 3: Calculate the Area of One Small Piece from Each Cardboard
Since each cardboard is divided into 10 equal pieces:
1. Area of one small piece from the first cardboard:
[tex]\[ \text{Area}_{\text{piece, first}} = \frac{\text{Area}_{\text{first}}}{10} = \frac{2.64}{10} = 0.264 \, \text{m}^2 \][/tex]
2. Area of one small piece from the second cardboard:
[tex]\[ \text{Area}_{\text{piece, second}} = \frac{\text{Area}_{\text{second}}}{10} = \frac{7.68}{10} = 0.768 \, \text{m}^2 \][/tex]
### Step 4: Calculate the Total Area Used
Using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard:
1. Area from 5 pieces from the first cardboard:
[tex]\[ \text{Total Area}_{\text{from first}} = 5 \times \text{Area}_{\text{piece, first}} = 5 \times 0.264 = 1.32 \, \text{m}^2 \][/tex]
2. Area from 3 pieces from the second cardboard:
[tex]\[ \text{Total Area}_{\text{from second}} = 3 \times \text{Area}_{\text{piece, second}} = 3 \times 0.768 = 2.304 \, \text{m}^2 \][/tex]
3. Total area of the new cardboard:
[tex]\[ \text{Total Area} = \text{Total Area}_{\text{from first}} + \text{Total Area}_{\text{from second}} = 1.32 + 2.304 = 3.624 \, \text{m}^2 \][/tex]
### Conclusion
Therefore, the total area of a cardboard made using 5 small pieces from the first cardboard and 3 small pieces from the second cardboard is [tex]\(3.624 \, \text{m}^2\)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.